
Accelerating I/O-Intensive Applications Through Multi-Tiered
Buffering with Hermes

11. Scientific Simulation Workflow

* VPIC writes data
* Data kept in Hermes
* BD-CATS then runs clustering
* 128GB of data per
checkpoint
* 8 checkpoints
* 16 nodes, 768 processes
* MaxBandwidth DPE

* Adding RAM + NVMe
30-50x faster than using
only HDD
* Data effectively buffered
* Can utilize burst buffers
to optimize data-intensive
workflow stages

Setup Analysis

Luke Logan, Xian-He Sun, Anthony Kougkas
llogan@hawk.iit.edu, {sun, akougkas}@iit.edu

3. Overview
Applications

RAM
NVMe
SSD (i.e., Burst Buffers)
HDD (i.e., Parallel File System)

DMSH Hardware

API

Data Placement Engine

Buffer Organizer

Prefetcher

I/O Clients RAM NVMe Burst
Buffers

File
System

Metadata Manager

Buffer Organizer

Hermes Library

* Many HPC sites have non-volatile burst
buffers between memory and disk
* Deep Memory and Storage Hierarchy (DMSH)

* VPIC: particle-in-cell simulation code for modeling 3D
kinetic plasmas (write-only)
* BD-CATS: particle clustering algorithm (read-only)

10. Testbed

CPU Nodes Network Memory +
Storage

2.2GHz Xeon
Scalable Silver 4114,

48 cores per node
16 nodes 40Gbps Ethernet with

RoCE support

* 48G DDR4-2400
* 200GB NVMe
* 200GB SSD
* 600GB HDD

4. Hermes APIs

* Hermes exposes a Put / Get API to store data “blobs”
* Various adapters transparently convert I/O into blobs
* Supports HDF5, POSIX, STDIO, MPI-IO
* No application changes

GitHub Website

* Decide where to initially place data
* Can be used to improve write performance
* Three policies currently implemented
* Custom policies can be built using buffer schema

5. Data Placement Engine

Placing data in
DMSH is

currently left to
users

Poor data
placement

decisions lead
to I/O stalls

1. Multi-Tiered Storage 2. Current Situation

3. Data Placement Engine * Can
transparently intercept I/O using
various APIs, including HDF5 * No
application changes

* A need for automatic
and intelligent data
placement

Domain
scientists are

not I/O experts

HDF5 does not
support I/O

buffering
natively

Each tier has
different

characteristics
and interfaces

* Should transparently
manage data
placement for each
independent tier

 Adjusts the position of blobs in the hierarchy
asynchronously based on the blob’s score

6. Buffer Organizer

BD-CATS

VPIC

POSIX STDIO MPI-IO

Ap
ps

Ad
ap

te
r

Changes the scores of blobs depending on their
expected next access

8. Prefetcher

MaxBandwidth

Data placed in fastest
tier with enough

capacity

RoundRobin

Data is distributed
evenly among tiers

with enough
capacity

Random
Data is randomly
sent to tiers with
enough capacity

12. Conclusion

* Designed / implemented Hermes, an intelligent and
transparent I/O buffering system
* Demonstrated the importance of intelligent
buffering on scientific workflows

8. Metadata Manager

* Adapter-specific information (e.g., what files should
Hermes flush data to before exiting?)
* Internal metadata (e.g., map blobs to hardware
locations)

8. Metadata Manager *
Adapter-specific information (e.g.,
the user files that hermes needs to
flush data to on exit) * Stores

9. Data Staging

* Import large datasets into Hermes
* Export large datasets from Hermes to a backend
* Shifts the burden of synchronization, aggregation,
and processing from the PFS

13. Ongoing
* Currently working with application domain scientists
to evaluate Hermes for more workloads
* Large-scale evaluations
* Identify opportunities for workload-specific
optimization

Compute ComputeI/O

FlushBurst
Buffer

An example of flushing blobs during compute

7. Buffer Organizer Blob Scoring

Access
Frequency

Promote

Access
Recency

Blob
Size

Blob
Tags

Demote

Higher score ->
faster tier

Lower score ->
slower tier

* Many workloads are predictable in their I/O patterns
(e.g., deep learning randomness seeds)
* Prefetcher thread is periodically called to update blob
scores
* Hermes I/O events are stored in a log, which the
prefetchers can analyze

