

Accelerating I/O-Intensive Applications Through Multi-Tiered Buffering with Hermes

Luke Logan, Xian-He Sun, Anthony Kougkas llogan@hawk.iit.edu, {sun, akougkas}@iit.edu

The HDF Group

3. Overview

6. Buffer Organizer

Adjusts the position of blobs in the hierarchy asynchronously based on the blob's score

7. Buffer Organizer Blob Scoring

9. Data Staging

* Import large datasets into Hermes

* Export large datasets from Hermes to a backend
* Shifts the burden of synchronization, aggregation, and processing from the PFS

10. Testbed			
CPU	Nodes	Network	Memory + Storage
2.2GHz Xeon Scalable Silver 4114, 48 cores per node	16 nodes	40Gbps Ethernet with RoCE support	* 48G DDR4-2400 * 200GB NVMe * 200GB SSD * 600GB HDD

11. Scientific Simulation Workflow

* VPIC: particle-in-cell simulation code for modeling 3D kinetic plasmas (write-only)

* BD-CATS: particle clustering algorithm (read-only)

4. Hermes APIs

Lermes

* Hermes exposes a Put / Get API to store data "blobs"
* Various adapters transparently convert I/O into blobs
* Supports HDF5, POSIX, STDIO, MPI-IO
* No application changes

5. Data Placement Engine

* Decide where to initially place data* Can be used to improve write performance

- * Three policies currently implemented
- * Custom nolision con he built using buffer
- * Custom policies can be built using buffer schema

8. Prefetcher

Changes the scores of blobs depending on their expected next access

<u>Setup</u>

- * VPIC writes data
 * Data kept in Hermes
 * BD-CATS then runs clustering
- * 128GB of data per
- checkpoint
- * 8 checkpoints
- * 16 nodes, 768 processes
- * MaxBandwidth DPE

<u>Analysis</u>

* Adding RAM + NVMe 30-50x faster than using only HDD

* Data effectively buffered
* Can utilize burst buffers
to optimize data-intensive
workflow stages

12. Conclusion

* Designed / implemented Hermes, an intelligent and transparent I/O buffering system

* Demonstrated the importance of intelligent buffering on scientific workflows

MaxBandwidth

Data placed in fastest tier with enough capacity

RoundRobin

Data is distributed evenly among tiers with enough capacity Data is randomly sent to tiers with enough capacity

Random

* Many workloads are predictable in their I/O patterns (e.g., deep learning randomness seeds)
* Prefetcher thread is periodically called to update blob scores

* Hermes I/O events are stored in a log, which the prefetchers can analyze

8. Metadata Manager

* Adapter-specific information (e.g., what files should Hermes flush data to before exiting?)
* Internal metadata (e.g., map blobs to hardware locations)

13. Ongoing

* Currently working with application domain scientists to evaluate Hermes for more workloads
* Large-scale evaluations
* Identify opportunities for workload-specific optimization

