
d rh g fd jh n g n gfmh g mg hmg hjmg hfm f

Tom Peterka
tpeterka@mcs.anl.gov

Mathematics and Computer Science Division

HDF5 Users Group Meeting ‘23
August 17, 2023

LowFive: In Situ Data Transport for
High-Performance Workflows

An
example
of three
tasks
coupled
through
the
LowFive
in situ
data
transport
library.

“Somewhere, something incredible
is waiting to be known.”
 –Carl Sagan

Tom Peterka, ANL
Dmitriy Morozov LBNL
Arnur Nigmetov LBNL
Orcun Yildiz ANL
Bogdan Nicolae ANL
Philip Davis U. Utah

github.com/diatomic/LowFive

Design Choices

A balance between user’s view of data (productivity) and the workflow’s efficient
movement of data (performance)

2

Design Criteria LowFive Choices

User’s view of data (model or schema) HDF5 data model

In situ transport mechanism (direct,
staging)

Direct, parallel, MPI point to point
messages

Software stack intercept location High-level HDF5 metadata

Software design Standalone HDF5 VOL plugin

In Situ Data Transport Mechanism

Direct
• No additional resources or services
• Simple, point-to-point communication
• Tightly coupled producer and consumer

(synchronous)
• A staging area could still be a

producer/consumer task

3

Staging
• Dedicated resources for transport
• Decouple producer from consumer

(could allow overlap)
• May require launching a separate service
• Shared access (could also involve locking)

Logically,
LowFive looks
like a staging
area, and it
could have been
implemented
this way.

The actual
implementation of
LowFive, however, is
direct point-point
communication.

Software Stack Intercept Location

4

• POSIX level (Burst buffer systems)
• Catch all I/O
• No metadata

Software Stack Intercept Location

5

• Application level (Conduit, Bredala)
• All metadata
• Change user code

• POSIX level (Burst buffer systems)
• Catch all I/O
• No metadata

Software Stack Intercept Location

6

• Application level (Conduit, Bredala)
• All metadata for data transport
• Change user code

• POSIX level (Burst buffer systems)
• Catch all I/O
• No metadata

• High-level I/O API (LowFive)
• Rich metadata for data transport
• Little/no change to user code

Software Stack

HDF5, NetCDF-4, HighFive, H5Py
I/O libraries

LowFive
Data transfer

HDF5
Data model

MPI
Message passing

DIY
Block parallelism

Virtual Object Layer (VOL)

Scientific Simulations, AI, ML Frameworks
Applications

• DistMetadataVOL
• MetadataVOL
• VOLBase

7

LowFive Metadata Tree

HDF5 Data Model
• Hierarchical data model much like

a UNIX file system
• Root is the file
• Internal nodes are groups
• Leaves are datasets or other

objects (e.g., attributes)

LowFive Data Model
• Our in-memory replica of HDF5

metadata
• One object for every HDF5

object
• Shallow or deep data pointer or

copy

Our own LowFive in-memory replica of HDF5 data model.

File
name: step1.h5

Group
name: group2

Dataset
name: particles
type: float32
dataspace: 1d
data: ptr_particles
ownership: lowfive

Group
name: group1

Dataset
name: grid
type: uint64
dataspace: 3d
data: ptr_grid
ownership: user

children

parent

children children

parent

parent

8

Data Redistribution

Producer Task w/ 6 Processes Consumer Task w/ 4 Processes

Proc. 0

Proc. 2

Proc. 1

Proc. 3

Proc. 4

Proc. 5

Proc. 0 Proc. 2Proc. 1 Proc. 3

Example of data redistribution from a producer task with 6 processes decomposed row-wise to a consumer task with 4
processes decomposed column-wise. The problem is that neither the producer nor the consumer task knows anything about
the other’s decomposition. 9

Synthetic Benchmarks

Number of processes and data sizes for
synthetic benchmark experimentsDifferent experiment scenarios

Producer Consumer

Pure
MPI

LowFive
Memory

LowFive
File

PFS

Pure
HDF5

Data
Spaces

10

Synthetic Benchmarks: In Situ vs. Storage

Time to write/read grid and particles between 1 producer task and 1 consumer
task, comparing LowFive file and memory modes, in a weak scaling regime.

5e
−0
1

5e
+0
0

5e
+0
1

5e
+0
2

Weak Scaling LowFive File vs Memory Mode

Number Processes

C
om

pl
et

io
n

Ti
m

e
(s

)

4 16 64 256 1K 4K 16K

LowFive File Mode
LowFive Memory Mode

11

Synthetic Benchmarks: Overhead of Using LowFive vs. Pure
HDF5 for File I/O

Time to write/read grid and particles, comparing LowFive file
mode with pure HDF5 file, in a weak scaling regime.

5e
−0
1

5e
+0
0

5e
+0
1

5e
+0
2

Weak Scaling LowFive File Mode vs. HDF5

Number Processes

C
om

pl
et

io
n

Ti
m

e
(s

)

4 16 64 256 1024

LowFive File Mode
Pure HDF5

12

Synthetic Benchmarks: Overhead of Using LowFive vs.
Pure MPI for Message Passing

1.
0

1.
5

2.
0

2.
5

3.
5

Weak Scaling LowFive Memory Mode vs MPI

Number Processes

C
om

pl
et

io
n

Ti
m

e
(s

)

4 16 64 256 1K 4K 16K

LowFive Memory Mode
Pure MPI

Time to write/read grid and particles comparing LowFive memory
mode, with pure MPI communication, in a weak scaling regime. 13

Synthetic Benchmarks: 10X Data Size

Time to write/read large size grid and particles, comparing LowFive
memory mode, DataSpaces, and pure MPI, in a weak scaling regime

0.
2

0.
5

1.
0

2.
0

5.
0

10
.0

Weak Scaling LowFive vs DataSpaces vs MPI (Large Data)

Number Processes

C
om

pl
et

io
n

Ti
m

e
(s

)

4 16 64 256 1K 4K

LowFive Memory Mode
DataSpaces
MPI

• 107 regularly structured
grid points + 107
particles per producer
process

• 190 MiB of data per
producer process

• 0.55 GiB of data per
consumer process (3:1
producer:consumer
procs)

• Total data size at the
largest scale tested is
0.55 TiB.

20%

14

Science Workflow: Cosmology

Time to write/read data between Nyx and Reeber using LowFive memory mode, HDF5 files, and AMReX plotfiles
demonstrates that LowFive in situ data transport is 20X faster at scale than the best I/O solution (AMReX plotfile format).

Both Nyx and Reeber
were used “off the shelf”
with no modifications to
use LowFive (in the
Henson workflow system)

Nyx Reeber

Dark matter particles
Image: https://crd.lbl.gov
2021

Merge tree
Image: Agarwal et al.
2004

15

Recap

LowFive
• In situ data transport layer for workflows
• HDF5 data model
• Built as an HDF5 VOL plugin
• Allows bypassing storage and sending data over MPI
• Redistributes data between producer and consumer tasks
• Standalone software library that workflow systems can use

16

Next Steps

• Finish implementing missing functions in our metadata

• Continue to test on applications and their software stacks

• Producer – consumer synchronization and flow control

• Integrate in workflow systems driving further development

• Henson can use LowFive (Nyx + Reeber use case)

• We are also developing a new workflow system---Wilkins---on top of
Henson and LowFive

17

Use Cases and Deeper Software Stacks

Climate
modeling
software
stack using
NetCDF
data model

Wilkins

LowFive

HDF5

MPI

E3SM Climate Codes

SCORPIO I/O Library

NetCDF-4

Wilkins

LowFive

HDF5

MPI

Nyx Cosmology Code

AMReX AMR Library

Cosmology
software
stack using
AMR data
model

Wilkins

LowFive

H5py

MPI

Keras

AI software stack using
tensor data model

Henson

Henson Henson

HDF5

18

Tom Peterka
tpeterka@mcs.anl.gov

Mathematics and Computer Science Division

Acknowledgments

Facilities
Argonne Leadership Computing Facility (ALCF)

Argonne Laboratory Computing Resource Center (LCRC)
Oak Ridge Leadership Computing Facility (OLCF)

National Energy Research Scientific Computing Center (NERSC)

Funding
DOE ASCR Research Program

Margaret Lentz

People
Tom Peterka, Dmitriy Morozov, Arnur Nigmetov, Orcun Yildiz, Bogdan Nicolae, Philip Davis

github.com/diatomic/LowFive

HDF5 Users Group Meeting ‘23
August 17, 2023

