H5/scClI.10

A Proposal for HDF5 Scientific Data
Compression Community Benchmarking

Mark C. Miller

Outline: What is H5Zbm.io

 Benchmark data sources
* An HDF5 command-line (e.g. raw data in/hdf5 file out) compression plugin tool

e Standard (command-line) compression tool sources (zip, gzip, xz, etc.)

Benchmarking scripts comparing (time/space) of HDF5 plugins to standard tools
* Including variations in relevant HDF5 features (e.g. chunk cache, partial I/0, etc.)
* Space performance includes both memory space and final file size

Documentation and examples of HDF5 compression usage

Web site with published benchmarking tables

Yearly “releases” coinciding with HDF5 releases

Goals of H5Zbm.io

e Keep community informed of compression capabilities
* Performance
* Best practices
* Documentation
* Examples

* Ensure performance of HDF5 library and compression features

Benchmark Data Sources: Idea 1

Scientific Data Reduction Benchmarks

This site has been established as part of the ECP CODAR project.

This site provides reference scientific datasets, data reduction techniques, error metrics, error controls and error assessment tools for users and

developers of scientific data reduction techniques.

Important: when publishing results from one or more datasets pr ted in this webpage, please:

Cite: SDRBench: https:/sdrbench.github.io
Please also cite: K. Zhao, S. Di, X. Liang, S. Li, D. Tao, J. Bessac, Z. Chen, and F. Cappello, “SDRBench: Scientific Data Reduction Benchmark
for Lossy Compressors”, International Workshop on Big Data Reduction (IWBDR2020), in conjunction with IEEE Bigdata20.

e Acknowledge: the source of the dataset you used, the DOE NNSA ECP project, and the ECP CODAR project.

e Check: the condition of publications (some dataset sources request prior check)

e Contact: the compressor authors to get the correct compressor configuration according to each dataset and each comparison metrics.

e Dimension: the order of the dimensions shown in the 'Format' column of the table is in row-major order (aka. C order), which is consistent with
well-known 1/O libraries such as HDF5. For example, for the CESM-ATM dataset (1800 x 3600), 1800 is higher dimension (changing slower) and
3600 is lower dimension (changing faster). For most compressors (such as SZ, ZFP and FPZIP), the dimensions should be given in the reverse
order (such as -2 3600 1800) for their executables. If you are not sure about the order of dimension, one simple method is trying different
dimension orders and selecting the results with highest compression ratios.

Data sets:

Name Type Format Size (data) Command Examples Link
CESM-ATM Climate Dataset1 : 79 fields: 2D, 1800 x 3600 ; Dataset1 | SZ(Compress):sz -z-f-i Dataset1 (raw)
Source: simulation Dataset? : 1 field : (raw): | G o0 3000132 MREL R Dataset1

Mark Taylor (SNL) 3D, 26x1800x3600. 1.47GB | sz(Decompress): sz x i (cleared)
Both are single precision, binary Dataset1 | CLDHGH_1_1800_3600.f32 -2 3600 Dataset2 (raw)
(cleared): | 1800 -s CLDHGH_1_1800_3600.f32.52 - Metadata
8 bit Entropy 32 bit Entropy 1.47GB ;FP: p £-i
avg 6.5 19.8 Dataset2: | CLDHGH_1_1800_3600.132 -z Dataset1’s
min 15 23 17GB CLDHGH_1_1800_3600.32.2fp -0 property
CLDHGH_1_1800_3600.32.zfp.out -2 ,
LS 8 228 3600 1800 -a 1E-2 -s Dataset2's
(CIeared LibPressio: pressio -b property
data compressor=$COMP -i
CLDHGH_1_1800_3600.f32 -d 3600 -d
bzeroed all 1800 -t float -0 rel=1e-2 -m time -m size
ackground | ;4
data) where $COMP can be sz, zfp, sz3,
mgard, etc...
Z-checker-installer: ./runZCCase.sh -f
REL CESM-ATM raw-data-dir 32 3600
1800
EXAALT Molecular 6 fields: x,y,z,vx,vy,vz, Dataset1: | SZ(Compress): sz -z -f -i xx.f32 -M REL Dataset1
Qniirra: Avnamine Eanh fiald atarad canaratahs A . 77212869440 Matadatad

Benchmark Data Sources: Idea 2
(MACSio data generation feature w/Perlin noise)

el D . S . I L IR — B i I 1~ = I LTINCTI o M S B e oA L I - B
+

=y o =
hkxN\N&E8QIlH B & hoh ks X \ & @8O i

DB: macsio_silo_00000_000.silo
Cycle:

- L
Active window @ | (] Auto apply a +
k w 2

Sources

e O &0

Open Close Reopen : Replace Overlay

3

Active source | macsio_silo_00000_*.silo database D Pseudocolor
Var: noise

Time

L - 02705

(4l | <« &0 » | 1> |

0.06472

Plots

T P L % 4%

Add, Operators, . Delete Hide/Show Draw Variables,

) |© |Pseudocolor - noise

-0.1775

Ao
Max: 0.5492
Min: -0.4198

Apply to (o) active window () all windows 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

X Axis X Axis
I Apply operators to all plots

@Apply subset selections to all plots

user: miller86 Liear millarRA

Benchmark Data: Things to consider

* Size

* Data types

* Dimensionality

* Noise and/or smoothness properties and over which dimensions
* File system being tested

* Parallelism

HDF5 Command-line compression plugin tool
(Like gzip/gunzip command-line tools but for HDF5 files)

For writes For reads

* Reads raw binary data file into memory (e.g. foo.dat) Opens hdf5 file (from writer) for reading

e Accepts command-line arguments specifying... Accepts command-line arguments specifying...

* File name containing raw binary data * File name containing raw binary data

* Input data file type and dimensionality * Input data file type and dimensionality

* Plugin (name or id) * Plugin (name or id)

* Plugin-specific options/params * Plugin-specific options/params

 Partial I/O params (optional) * Partial I/O params (optional)

e HDFS5 lib relevant feature params (chunk sizing, cache * HDF5 lib relevant feature params (chunk sizing, cache
sizing, data type, VFD, lib version, etc.) sizing)

» Sets up/performs H5Dwrite() with data read from file Sets up/performs H5Dread()

* Reports time/space performance on stdout Reports time/space performance on stdout

* Initial read and memory for raw data factored out

Standard command-line compression tools to
compare against

* For example...

* gzip, gunzip
* XZ, UNXZ

* Zip, unzip

* bzip, bunzip

* Assume available on benchmarking system or build from sources
* Run and get time/space performance on the same raw binary file

* Report HDF5 performance as a proportion of these tools
* Include final file size too

Benchmarking scripts

* Performs a whole suite of benchmarking runs gathering data

* Probing relevant dimensions of the performance space
 Versions of HDF5 API/File format (H5Pset_libver bounds())

* Packages up results into json or yaml file
e Submit PR with machine/config info to H5Zbm.io GitHub repo

Documentation

* Document common use cases
* Document common pitfalls and how to mitigate
* Refer to sections of HDF5 Reference manual for relevant props

Web Site With Published Results

 Kinda sorta like a CDash thingy (maybe really via CDash)
* Tables and plots
* Important notices regarding issues in HDF5 releases (if any needed)

* Yearly releases/updates

Other things to consider

* Time and Space performance

* Compress / Decompress performance

* CPU Architectures???

* HDF5 versions (compile-time selection)

 GPU / CPU

* Threaded compression plugins and threaded command-line tools

* How to characterize HDF5 performance relative to “best” native tool

