Advanced Concepts and
Issues with H5Z-ZFP

Mark C. Miller, LLNL

Outline

* The ZFP compression library

* Endianness portability and targeting

* Handling >4D datasets even though ZFP’s max is 4D

* Understanding interplay between ZFP chunklets and HDF5 chunking
* Partial writes and ZFP chunklets

* Writes over main “time” loop of application and ZFP chunklets

* Reading and writing ZFP compressed arrays

* Letting ZFP compression parameters vary over single dataset

H57-ZFP uses ZFP Library

* https://github.com/LLNL/zfp

* Development lead by Peter Lindstrom

* Lossy (and mostly lossless) compression
1,2, 3 and 4 dimensional data

* 32 and 64 bit integer and floating point data
* Rate, accuracy, precision and expert modes
* GPU and OpenMP kernels available

* Creates a data stream that is endian-agnostic

https://github.com/LLNL/zfp

Y & master + H5Z-ZFP | src | H5Zzfp.c

E n d Ia r Blame 709 lines (605 loc) - 26.2 KB Raw (0J

2
SLALUS — £ Z1pP_UCSLUNPLESS\ZSUL, 211UJ,
620
621 /* clean up */
° ZFP O e| 622 Z zfp_field_free(zfld); zfld = 0;
F) 623 Z zfp_stream_close(zstr); zstr = 0;
624 B stream_close(bstr); bstr = 0;
* Uncomp = Isumer
626 if (!status)
. 627 H5Z_ZFP_PUSH_AND_GOTO(H5E_PLINE, H5E_CANTFILTER, ©, "decompression failed");)
* What if ¢«
eee 629 /* ZFP is an endian-independent format. It will produce correct endian-ness
¢ HDFS" 630 during decompress regardless of endian-ness differences between reader
631 and writer. However, the HDF5 library will not be expecting that. So,
® HDFS 632 we need to undue the correct endian-ness here. We use HDF5's built-in ‘If
633 byte-swapping here. Because we know we need only to endian-swap,
o (:()r—rEE(634 we treat the data as unsigned. */
635 if (swap != H5T_ORDER_NONE) ..
* Have |l e . | un-ruin it
637 hid_t src = dsize == 4 ? H5T_STD_U32BE : H5T_STD_U64BE;
Y We aISO 638 hid_t dst = dsize == 4 ? HS5T_NATIVE_UINT32 : H5T_NATIVE_UINTé64;
639 if (swap == H5T_ORDER_BE)
640 src = dsize == 4 ? HS5T_STD_U32LE : H5T_STD_U64LE;
641 if (H5Tconvert(src, dst, bsize/dsize, newbuf, @, H5P_DEFAULT) < @)
642 H5Z_ZFP_PUSH_AND_GOTO(H5E_PLINE, H5E_BADVALUE, @, "endian-UN-swap failed");

643 }

Handling >4D Data

e ZFP Library supports a maximum of 4 dimensions
* How to handle datasets with more than 4 dimensions?
* Ensure that at most 4 dimensions of the HDF5 chunking are non-unity

* Magic of HDF5 is that ZFP is compressing individual chunks and as
long as those are <=4D, everything works

* When you have a choice, select smoothest dimensions for non-unity

/FP Chunklets and HDF5 Chunks

 ZFP operates in quanta of 49 chunklets where d is the dimensionality
* Example: For 2D, ZFP chunklets are 4x4

* What about data that has dimensions that are not multiple of 4?
* This leads to partial chunklets
e ZFP uses its own notion of a “fill value” (which | think varies with chunklet)

e Fora 2D array, 27 x 101, ZFP will treat as 28 x 104 (potential 6.4% waste)
 For a 3D array 1024 x 1024 x 2, ZFP will treat as 1024 x 1024 x 4 (50% waste)

* If writing 2D slices in memory to 3D array in file AND want ZFP compressed over
all 3 dimensions...

Partial Writes and ZFP Chunklets

* Chunk size and shape in relation to partial write impacts performance

* Writing scenario 1

* |/O request might partially overlap chunks already present in file (maybe from a previous write)
* HDF5 must engage in read/modify write for those chunks (if lucky they are cached)

* Write scenario 2
* |/O request might partially overlap chunks NOT already present in file
e HDF5 will assume “fill value” (which defaults to zero) for those regions
* May interfere with ZFP’s compression performance and own notion of fill value

Writes over main “time” loop and ZFP
chunklets

* Maybe iterating overtime computing 2D slices of some ultimately 3D
dataset (2D+time) in the file and want ZFP compression over all 3
dimensions of the data in the file.

* Remember, ZFP wants to treat every dimension as a multiple of 4,
even in the time dimension.

* Choice is to buffer 4 timesteps up before calling H5Dwrite or

 Suffer performance issues associated with ZFP’s “padding” to 4 and
however that plays out with HDF5 chunk

/FP Compressed Arrays

* Works only with rate mode of ZFP compression (guarantees size)

e Use case 1: Read compressed data from file instantiating compressed
array in memory

* Use case 2: Write compressed array from memory creating
compressed dataset in file such that any downstream reader is
completely normal

e Use the H5Dread_chunk() and H5Dwrite_chunk() routines
* Slightly problematic because it changes how consumer or producer use API

_etting ZFP compression params vary over
HDF5 chunks

* Currently, H5Z-ZFP encodes filter params in “cd_values”

* Actually somewhat problematic due to double precision ZFP params and
unsigned int type for cd_values

e HDF5 delivers to filter individual chunks

* Could just decide to vary ZFP compression params on chunk-by-chunk
basis and instead store those params as part of each chunk

* For reasonably sized chunks, overhead would be negligible

