
Advanced Concepts and 
Issues with H5Z-ZFP

Mark C. Miller, LLNL



Outline

• The ZFP compression library
• Endianness portability and targeting
• Handling >4D datasets even though ZFP’s max is 4D
• Understanding interplay between ZFP chunklets and HDF5 chunking
• Partial writes and ZFP chunklets
• Writes over main “time” loop of application and ZFP chunklets
• Reading and writing ZFP compressed arrays
• Letting ZFP compression parameters vary over single dataset



H5Z-ZFP uses ZFP Library

• https://github.com/LLNL/zfp
• Development lead by Peter Lindstrom
• Lossy (and mostly lossless) compression
• 1, 2, 3 and 4 dimensional data
• 32 and 64 bit integer and floating point data
• Rate, accuracy, precision and expert modes
• GPU and OpenMP kernels available
• Creates a data stream that is endian-agnostic

https://github.com/LLNL/zfp


Endianness portability and targeting

• ZFP operates in an endian-agnostic way
• Uncompression produces the correct endianness result for consumer
• What if data is written on big-endian but read on little-endian?
• HDF5’s internal pipeline processing does not expect this
• HDF5 expects to have to byte-swap whatever compressor returns itself
• Correct result is returned from H5Z-ZFP filter and HDF5 will ruin it
• Have logic to detect this situation and pre-ruin the result so HDF5 will un-ruin it

• We also disallow endian targeting (it is meaningless)



Handling >4D Data

• ZFP Library supports a maximum of 4 dimensions
• How to handle datasets with more than 4 dimensions?
• Ensure that at most 4 dimensions of the HDF5 chunking are non-unity
• Magic of HDF5 is that ZFP is compressing individual chunks and as 

long as those are <=4D, everything works
• When you have a choice, select smoothest dimensions for non-unity



ZFP Chunklets and HDF5 Chunks

• ZFP operates in quanta of 4d chunklets where d is the dimensionality
• Example: For 2D, ZFP chunklets are 4x4
• What about data that has dimensions that are not multiple of 4?
• This leads to partial chunklets
• ZFP uses its own notion of a “fill value” (which I think varies with chunklet)

• For a 2D array, 27 x 101, ZFP will treat as 28 x 104 (potential 6.4% waste)
• For a 3D array 1024 x 1024 x 2, ZFP will treat as 1024 x 1024 x 4 (50% waste)
• If writing 2D slices in memory to 3D array in file AND want ZFP compressed over 

all 3 dimensions…



Partial Writes and ZFP Chunklets

• Chunk size and shape in relation to partial write impacts performance
• Writing scenario 1

• I/O request might partially overlap chunks already present in file (maybe from a previous write)
• HDF5 must engage in read/modify write for those chunks (if lucky they are cached)

• Write scenario 2
• I/O request might partially overlap chunks NOT already present in file
• HDF5 will assume “fill value” (which defaults to zero) for those regions
• May interfere with ZFP’s compression performance and own notion of fill value



Writes over main “time” loop and ZFP 
chunklets
• Maybe iterating overtime computing 2D slices of some ultimately 3D 

dataset (2D+time) in the file and want ZFP compression over all 3 
dimensions of the data in the file.
• Remember, ZFP wants to treat every dimension as a multiple of 4, 

even in the time dimension.
• Choice is to buffer 4 timesteps up before calling H5Dwrite or
• Suffer performance issues associated with ZFP’s “padding” to 4 and 

however that plays out with HDF5 chunk



ZFP Compressed Arrays

• Works only with rate mode of ZFP compression (guarantees size)
• Use case 1: Read compressed data from file instantiating compressed 

array in memory
• Use case 2: Write compressed array from memory creating 

compressed dataset in file such that any downstream reader is 
completely normal
• Use the H5Dread_chunk() and H5Dwrite_chunk() routines
• Slightly problematic because it changes how consumer or producer use API



Letting ZFP compression params vary over 
HDF5 chunks
• Currently, H5Z-ZFP encodes filter params in “cd_values”
• Actually somewhat problematic due to double precision ZFP params and 

unsigned int type for cd_values

• HDF5 delivers to filter individual chunks
• Could just decide to vary ZFP compression params on chunk-by-chunk 

basis and instead store those params as part of each chunk
• For reasonably sized chunks, overhead would be negligible


