
From Xfiles to SAF:
The NNSA Labs and
The Early Pedigree of HDF5

MARK C. MILLER, LLNL
HUG 2023, OHIO SUPERCOMPUTER CENTER

AUGUST 17, 2023

LLNL-PRES-853264

LLNL-PRES-853264

Computing has been part of NNSA Labs
From the very Beginning

LLNL-PRES-853264

High Performance “Calculating” (HPc)
And the Manhattan Project

• Needed to understand various physics…
• Neutron mean free paths

• Reactivities & critical densities of U and Pu

• Detonation properties of explosives

• Some experimentation not possible

• Relied upon theoretical calculations

• Initially used armies of women (kilo-girls)

• Next, IBM punch card calculating machines

• von Neumann & Feynman perfected the
calculations (3 months à 3 weeks)

LLNL-PRES-853264

High Performance Computing (HPC)
And The NNSA labs
Their first all (or mostly) Digital Machines

Lab Year Opened Earliest Digital Computing Capability Computer Type

Los Alamos 1943 1952 MANIAC (LANL built)

Sandia 1948 ~1960 IBM 7090 / CDC 3600

Livermore 1952 1953 UNIVAC 1

• National Nuclear Security Administration (NNSA)
• Los Alamos & Livermore focus on design
• Sandia tests, manufactures, deploys and maintains

• Sandia formed out of LANL Z division
• Two sites near LANL and LLNL…no serious HPC until ~1990

LLNL-PRES-853264

Accelerated Strategic
Computing Initiative (ASCI) 1995

Replace testing with science-based modeling and simulation

• A key cross-cutting effort: The ASCI Data Models and Formats Effort (ASCI-DMF)
• Provided high performance, scalable, parallel I/O
• Supported a wide diversity of scientific data and be extensible to new kinds
• Provided a Rich feature set (e.g. DIT operations, partial I/O, compression, etc.)
• Ensured scientific data was portable, exchangeable, and easily shareable
• Suitable for restart (bit-for-bit binary match to in-memory data) as well as exchange

Work with 3 radically different ASCI system architectures (Red, Blue-Pacific, Blue-Mountain)

LLNL-PRES-853264

Scientific Data as Numerical Fields

• Ideal Fields: 𝐹 𝑥 in the continuous world
• All scientific data is a real (or imagined) observable

in the real, continuous world
• Infinitely precise values at infinitely many points
• Something you might actually measure by experiment if possible
• Example: velocity of air flow over a wing

• Numerical Fields: 𝐹 𝑥 ≅ $𝐹(&𝑥) = ∑!"#$%&𝑓!𝑏!(&𝑥) in the virtual world
• 𝑓! are the degrees of freedom (DOFs) or weights in the numerical representation of the field
• 𝑏! 𝑥 are basis functions
• The set of functions, {𝑏! 𝑥 }, often determined by how 𝑥 in 𝐹 𝑥 is discretized (e.g. meshed)

This is how ideal fields are represented (implemented) in a computer program

LLNL-PRES-853264

First ASCI-DMF Meeting
at LLNL (Fall of 1996)

• NCSA’s HDF Team (Mike, Quincey, Elena, Albert, others)
• Linnea Cook was aware that HDF team was looking to update their format (from HDF4)

• Limit Point Systems (David Butler)
• Mathematician and developer of Vector Bundle, Fiber Bundle and Sheaf Data Models

• LLNL (Silo/PDB), SNL (Exodus/netCDF), LANL (XFiles)

The Sets and Fields (SAF) data model grew out of this effort

LLNL-PRES-853264

A Brief look at State of NNSA Lab’s
I/O technologies in mid-1990s

• LANL (X Division Code Linking file)
• Primarily a serialization format…fixed format, ordering, float formats, no random access

• LLNL (Silo/PDB) – Mainly Structured Codes for Hydrodynamics
• PDB provides lower level arrays of ints/floats/etc and random access

• SNL (Exodus II/netCDF) – Mainly Unstructured codes for Mechanics
• netCDF provides lower level arrays of ints/floats/etc (pseudo-random access)

Sandia was only lab using low-level format that was developed externally and used
by a larger community of users and had a fledgling ecosystem of tools (netCDF)

LLNL-PRES-853264

1960 – 1980:
The I/O Stovepipe Era

• Each application writes its own unique file
• Many companion tools

• Data management, browsing, editing, differencing, analysis, plotting and viz. tools

• Application and all companion tools are integrated together via this format

• Data Exchanges among these tools used common (app-specific) file format
• Every tool written to conform to the application’s file format
• Works fine within a stovepipe

• Exchanges across stovepipes è Code “Linkers”
• Brute force data exchange

ALE3D
CHARM

CAVEAT

LLNL-PRES-853264

1960 – 1980 : Improvements in HPC Ecosystem
• Improvements in Languages...

...eliminate need for custom pre-processors tools

• Improvements in Operating & Batch systems...
...eliminate need for custom job scheduling and control tools

• Improvements in File systems...
...eliminate need for custom data storage, management & browsing tools

• What about data differencing, analysis, plotting, viz.?
• These remained a serious challenge

LLNL-PRES-853264

1980 – 2000 : Emergence of two Kinds of
General Purpose I/O Libraries

•Kind 1: Data Structure Abstractions
• Read/Write an Array, a Struct or a Linked-List
• CDF (Common Data Format), HDF (Hierarchical Data Format), PDB (Portabl DataBase)

•Kind 2: Computational Modeling Abstractions
• Read/Write a Mesh, a Field, a Material a Time history
• Exodus (SNL-1992), Silo (LLNL-1994), CDMLib (LANL-1998)

• Typically these take advantage of (e.g. Use) Kind 1 libraries (Exodus/netCDF, Silo/PDB)

LLNL-PRES-853264

Software Engineering vs. “Data” Engineering

The level of abstraction at which data is characterized…

...governs entirely a community’s ability
to write general purpose tools to process it.

I/O isn’t about I/O…Its about Data Exchange

LLNL-PRES-853264

Describing Scientific Data Is Challenging

LLNL-PRES-853264

Working
Application

Code

• Types/Weights
• Buckets of #s
• Languages

Discrete
Math
Model

• Mesh Elements
• Variable DOFs
• Basis functions

Continuous
Math
Model

• Sets
• Fields
• Relations (PDEs)

The Design Life Cycle
of Scientific Computing Applications

At each phase, different teams will make different choices

LLNL-PRES-853264

Abstraction is key to Wide Scale Integration of
Scientific Software

Brute force
integration

LLNL-PRES-853264

Unfortunately, An Abstract Math Model can present
A Conceptual Hurdle

• Vector Bundles

• Fiber Bundles

• Sheafs

• Multi-Sheafs

• The Sets and Fields (SAF) data model
aimed to simplify the abstraction

LLNL-PRES-687907

LLNL-PRES-853264

HDF5 features inspired by or related to
Needs of NNSA Labs

• Numeric formats and type conversions (from Silo/PDB)
• Pre-defined HDF5 numeric types (e.g. CRAY, INTEL, IEEE, ALPHA, etc.)

• Groups, mounts and symlinks (from file system metaphor)

• MIF Parallel I/O Paradigm (from Silo/PDB parallel I/O)

• MPI-IO (from Exodus II need for scalable I/O to single file)

• Data spaces (from Exodus II nodesets/sidesets and SAF data model)

• Virtual File Drivers (from file systems / dump strategies used @ NNSA labs)
• Family (Windows dev), split (ASCI RED, ASCI Blue Mountain), MPI-IO (ASCI Blue Pacific)

• File “Images” (2012) (from need to leverage I/O code for MPI messaging)

• Virtual Datasets (2016) (from Silo multi-block objects)
LLNL-PRES-687907

LLNL-PRES-853264

The HDF Team got a Front Row Seat at
NNSA, Tri-Lab Data Integration Efforts

• Many meetings 1996-2001

• Except in isolated, one-off instances, the three labs had never shared data

• Three different experiences and expertise in integrating via files
• Exodus II/netCDF, Silo/PDB, XFiles

• Three different computing and file system architectures
• ASCI Red, ASCI Blue Pacific, ASCI Blue Mountain

• There was also a parallel “Common Viz. Tool” effort

LLNL-AR-743064

LLNL-PRES-853264

Role of HDF Team in ASCI DMF and
Role of ASCI DMF in HDF5

• The HDF Team served as an objective third party

• Took the best ideas coming from all three labs and used those to inform the
design of HDF5

• Found a way to incorporate the only available, portable, scalable, parallel
interface (MPI-IO)

• Found other user communities who wanted similar features (leverage)

• Cultivated and curated HDF5 and associated eco-system to what it is today

LLNL-AR-743064

LLNL-PRES-853264

What I treasure most about my HDF5 experience

• The people I’ve worked with (across NNSA and of course with THG)

• The small role I got to play in helping HDF5 to come about

• The impact HDF5 has had on various communities

• The rock solid API stability THG has maintained

• The commitment to providing quality, open source software

• The really cool stuff I still get to do (and impress others with) with HDF5

• The “idea” map of HDF5 future features

• The knowledge and experience we’ve gained to start developing HDF6 🤪

LLNL-PRES-853264

Happy Birthday, HDF5. 25 Years is a big deal!!

• Some software projects “succeed” for inexplicable reasons

• Most software projects succeed because of the blood, sweat
and tears of the people who support it.

Thank you Team HDF5 for your
dedication and hard work

🎂

LLNL-PRES-853264

End

LLNL-PRES-853264

Backup Slides

LLNL-PRES-853264

Home Grown vs. Community Grown

• Home grown is a heavy lift
• Every new tool requires development effort and time that sponsor has to pay for
• But, you control everything including all important I/O performance
• Can quickly and reliably address show-stoppers

• Community standard leverages community developed tools
• But, you must use the technology in a way the community expects

• Counter-example: Exodus II files in netCDF … not a natural fit due to unstructured gridding
• How will show-stoppers be handled
• What if community doesn’t achieve sufficient critical mass?
• What if community’s interests and NNSA lab’s interest don’t sufficiently overlap?

LLNL-PRES-853264

Restart vs. Plot (vs. Time Histories Vs. Linkers)
• Restart files require bit-for-bit identical match with memory resident data
• PDB still read across disparate CPU architectures if necessary

• Plot files can be more flexible (all of the data for some of the times)
• Most often single precision is fine
• Subset of variables code used

• Time histories (some of the data for all of the times)
• Often just ascii csv files

• Inter-code linker files
• Used to integrate two codes (structured grid and unstructured grid)
• Generally requires constant care and feeding as either code evolved

Can lead to four separate I/O interfaces on a code

LLNL-PRES-853264

Standardized interface vs.
Standardized Container

• File format specification is more of a standardized container (byte layout)
• Can avoid dependencies if your willing to own the serialization code
• obj->precision = 8;

• API Specification is a standardized interface (function)
• Underlying storage can be anything (HDF5, netCDF, XML, etc.) and anywhere
• obj->SetPrecision(8);
• Like a level of indirection over the standardized container approach

• Standardizing on both is really the ideal

LLNL-PRES-853264

Binary vs. ASCII data

• Base 10, human readable ASCII not bit-for-bit
reproducible with mem-resident data
• Hadn’t considered base64 encodings back then (not sure

why…but are not human readable)

• XDR was too slow for decent I/O performance

• Constant conversion (binary to ascii on write, etc.) was
bandwidth limiter … not so much nowadays

• Binary data not machine portable
• Until we had PDB and/or IEEE-754 standardization

• Variable length ASCII strings impede random access

LLNL-PRES-853264

Single-sided vs. Double-sided I/O

• Single sided: Application does the work and has the logic to decide when to
move data between memory and disk

• Double-sided: Every exchange of data, even I/O, involves two clients
• Application’s publish their data for prospective clients
• Clients decide if and when to perform an exchange
• Even for I/O to a file, a Restart Manager or a Plot Manager client handle the I/O
• Moves all of the logic for deciding when and how to move data from application to be

shared with other applications

LLNL-PRES-853264

Cray vs. SGI

• Computed on Crays, visualized on SGIs

• Restart files stayed on Crays

• Plot files migrated to SGIs

• Had to convert floats, byte swap ints, and handle “Cray pointers”

LLNL-PRES-853264

Hub and Spoke vs.
Parameterized Formats

• Hub and Spoke
• Conversion on write and conversion on read for every client not 1:1 with HUB
• Conversion costs worsen for clients semantically “further” from HUB
• Likely HUB cannot be bit-for-bit identical for all client’s data (impacts restart utility)

• Parameterized
• Parameterizations can be complicated (e.g. row-major vs. col.-major)
• Conversions happen only when producer and consumer incompatible
• Restart use cases covered whenever parameterizations fit

LLNL-PRES-853264

Structured vs.
Unstructured Meshes

• For structured meshes, coordinates and connectivities
are implied (not explicitly stored)

• For unstructured meshes, they are explicit

• For a 3D mesh of hexahedra, the mesh costs 11 problem-sized arrays
• 3 coordinate arrays for X, Y and Z coordinates of each node
• 8 connectivity arrays for the 8 corners of each hexahedra

>10x memory hit in viz. apps if do not support structured meshes natively

LLNL-PRES-853264

Problem-sized (raw) vs.
Log-Problem-sized or Fixed-sized (meta) Data

• Some data grows proportionally as we scale problem up (Fields)
• Basically anything having to do with the main mesh and its variables
• Coordinates, connectivities, physics variables

• Some data grows by other (slower growing) factors (funky in-betweeners)
• Compute partition & connectivities (neighbor info) (# of processors, cores/threads, GPUs)
• Parent/child relationships in fine-grained AMR
• Surface to volume relations and mixing materials at late time
• Coordinates of rectilinear (structured) meshes

• Some data fixed or so slowly growing treating as fixed is ok (Sets)

LLNL-PRES-853264

Multiple Independent File (MIF) vs.
Single Shared File (SSF)
Parallel I/O

• Simpler I/O coding (module baton passing)

• Application managed & throttled concurrency

• Works on any file system (laptop to LCF)

• Handles disparities in data across MPI ranks

• Easily combined with HDF5 DIT operations

• No implied global re-ordering on read/write

• Entirely analogous to Big Data I/O “shards”

All tools designed to handle “domain overload”

LLNL-PRES-853264

Menu-oriented vs. Model-oriented
Scientific Data Description

MENU ORIENTED

• Fixed set of objects on the menu (API
methods)

• UCD-mesh, point-mesh, xy-curve, zone- or
node-centered scalar or vector variable…

• Find object on menu that matches your data
• Some conversion to/from menu on read/write

• Or, ask chef to cook up a new menu item

• API and system complexity grows as user
base grows

MODEL ORIENTED

• Fixed (and small) set of modeling primitives

• Build up representations of any object from
these primitives (literally model your data)

• API and system complexity remain more
stable as user base grows

• Modeling primitives are necessarily math-
oriented and require deeper understanding
of abstract mathematical concepts than
most developers are maybe willing to try

LLNL-PRES-853264

Increasing LOA

Implementations

ALE3D, Albany, LAMPS

MFEM, FiberBundles, Sheafs, SAF

Silo, LibMesh, Exodus, ITAPS, VTK

HDF5, netCDF, ArrayIO, PDB

MPI-IO, XDR, stdio, aio, mmap

POSIX IO

GPFS, HDFS, Lustre ext2/3, zfs, xfs, hfs

hd, sd, cd, dvd, tape, ramdisk, flash

Abstractions

Real World Phenomena

Continuous Mathematics

Discrete Numerical Models

Prog. Language Data Constructs

Primary Storage (Main Mem.)

File System

Secondary Storage (logical)

Secondary Storage (physical)

Objects

Physics, Chemistry, Materials...

PDEs, Fields, Topologies, Manifolds

Meshes, Materials, Variables

Arrays, Structs, Lists, Trees

Ints, Floats, Pointers, Offsets, Lengths

Files, Dirs, Links, Permissions, Modes

Pages, Inodes, FATs, OSTs, OSDs

Bits, Volumes, Sectors, Tracks

Levels of Abstraction of Scientific Data

LLNL-PRES-853264

Data Abstractions vs. I/O Performance

LLNL-PRES-853264

Fast To Implement vs. Fast I/O

• Structs of structs of structs…serialization,
or, C++ object serialization,
or, scientific object serialization
• Use HDF5 “Group” for aggregation

• Use HDF5 ”dataset” for struct/obj data

• Massively simplified I/O coding

• Massively inefficient I/O performance

