
Exceptional service in the national interest

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly
owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

CGNS PARALLEL DECOMPOSITION
A WORKFLOW FOR USING CGNS IN PARALLEL HPC ANALYSES

Gregory Sjaardema, Simulation Modelling Sciences

Request ID 1717606

HDF5 User Group (HUG) 2023

August 16-18, 2023
Scott Laboratory, Columbus, OH

Unclassified Unlimited Release

A supercomputer is a device for turning compute-bound problems into I/O-bound problems

CGNS PARALLEL ANALYSIS OPTIONS

Unstructured CGNS
• Auto-decomp (1 file run on N ranks)
• Decomposition strategy / algorithm
• Zone is empty or contiguous on a processor rank

• File-per-rank (N files run on N ranks)
• Reconstruction algorithm –
• order based on inter-zone grid connectivity
• Based on left/right/upper/lower/front/back can order all zones
• Based on ordering, can get global size of a zone
• Can set offset of a local zone into the global zone

Structured CGNS
• Zoltan decomposition options, similar to Exodus

RELATIONSHIP TO HDF5

CGNS uses HDF5
THG supports development of CGNS
Once model is decomposed, HDF5 parallel read capabilities are used
• Each rank reads its portion of the mesh
• All ranks are reading at same time the information that they need.

REQUIREMENTS

Distribute Work Evenly
No communication during decomposition
Decomposition running time independent of cell count.

Minimize inter-processor communication
Memory efficient
• cannot hold entire mesh on single rank
• If a serial run can handle M cells,
• then an N-rank run should be able to handle ~M*N cells or ~M/rank

Consistent / Invisible
• The number of ranks does not affect model metadata.
• The user should not need to know how many ranks the analysis is run on
• Intelligent default behavior

Visible if needed – if there are problems, make it easy to determine what went wrong

– I/O SUBSYSTEM – IOSS LIBRARY

• Started as the IO component of the Sierra project – 12/1999
• Provide a database-independent interface to Sierra shielding the applications from

differences in database types (Exodus, CGNS, XDMF, Adios2, Catalyst, …)
• Supports Advanced HPC Capabilities:
• Kokkos Data
• Burst Buffer
• Data Warehouse (FAODEL)
• Embedded Visualization (Catalyst2)

• Auto-decomposition option replaces the legacy file-per-processor mode
• Uses either HDF5 or PnetCDF for parallel input
• Uses decomposition methods in Zoltan and ParMETIS
• Supports Exodus and CGNS (Structured and Unstructured)

• Auto-join (single file output) option
• Uses HDF5 or PnetCDF for parallel output
• Scalability issues.... Being addressed.

CGNS
IOSS

Exodus

HDF5
NetCDF

PNetCDF
PFS / Disk / Memory

Catalyst

DECOMPOSITION ALGORITHM

Input:
• Number of ranks
• Load Balance Factor (LBF): ”goodness” of decomposition

Calculate:
• Average_work = #cells / #ranks
• Decompose such that:
• Average_work / LBF < work/rank < Average_work * LBF

Overview:
• Pre-split -- Give the algorithm at least #rank zones of approximately correct size
• Adapt pre-split if needed
• Assign zones to ranks

PRE-SPLIT: NEED #ZONES >= #RANKS

Pre-split:
• Per-zone: splits[zone] = work[zone] / average_work
• If (sum_splits != #rank) adjust_splits
• Pick zone ‘zone’ with Minimum abs(average_work – work[zone] / (splits[zone] +/- 1))
• Repeat until “sum_splits == #rank”

• Check that this set of splits gives work for each zone close to average

Split the zones to get sub-zones of about right size…
• if splits[zone] == power-of-2 (2^n)
• Split in half `n` times

• Else
• Split off such that remainder can be split in the power-of-2 mode…

ZONE SPLITTING

Split StructuredZone along the largest ordinal into two children; return the created zones.
• Input: avg_work – we want one of the children to have close to that much work.
• Split Ratio = avg_work / work
• Which ordinal gives work closest to avg_work
• Try to keep as “squarish” as possible
• Try to keep >1 interval on each ordinal

Split zones know:
• Adam, parent, sibling
• Size and offset into adam zone
• What ordinal they were split from parent

Add a ZGC due to splitting – siblings communicate
Add ZGC from parent

Adam (8x8x1)

P1(8x4x1)

P2 (8x4x1)

P1C1 (4x4x1)

P1C2 (4x4x1)

P2C1 (4x4x1)

P2C2 (4x4x1)

Ranks: 4 (avg=16)

Adam (8x8x1)

P2(8x5x1)

P1 (8x3x1)

P2C1 (4x5x1)

P2C2 (4x5x1)

Ranks: 3 (avg = 21.3)

64

Work: 64
#ranks: 4
Average_Work = 64/4 = 16

64

Work: 64
#ranks: 3
Average_Work = 64/4 = 21

32 32

Pre-Split:
Splits = 64 / 16 = 4 (2^2)
Split 1,2: split in half
Split 3,4: split each half in half

40 24

Pre-Split:
Splits = 64 / 21 = 3
Split 1,2: 8 * 1/3 = 2.7 ~ 3.
Split 1: 3x8 = 24, Split 2: 5x8 = 40

16 16

16 16

Pre-Split:
Splits = 64 / 16 = 4 (2^2)
Split 1,2: split in half
Split 3,4: split each half in half
Each split has work=16

20 24

20

Pre-Split:
Splits = 64 / 21 = 3
Split 1,2: 8 * 1/3 = 2.7 ~ 3.
Split 1: 8x3 = 24, Split 2: 8x5 = 40
Split 2: 40 / 21 ~ 2
Split 2, 3: 4x5
Work: 24, 20, 20

ASSIGN ZONES TO PROCS:

Until `zone->work() > avg_work * load_balance_threshold`
• Sort zones based on work.
• Assign first #proc zones to procs 1..#procs
• Continue with remaining zones:
• Find proc with minimum work and zone(s) on it do not match this zones Adam

• Split zone(s) if cannot get a proc’s work within range
• Want work[proc] / avg_work <= LBF

• Count #procs where work exceeds desired and split that many zones;
• Split largest zone on a proc which exceeds desired work range

• Repeat until no rank exceeds desired

Execution time dominated by max work, so better to have 1 rank much below average
than 1 rank much more than average.

• Z1 work = 32
• Z2 work = 64
• Work = 96
• #ranks = 4
• Average_Work = (32 + 64) / 4 = 24

Z2
64

Z1

32

Zone 1 Zone 2

Work: 96 (zone 1: 32, zone 2: 64)
#ranks: 4
Average_Work = 96/4 = 24

Pre-Split:
• Zone 1: 32 / 24 = 1.3 = ~1
• Zone 2: 64 / 24 = 2.7 = ~3

• Split 1: 8x2 (16)
• Split 2: 8x6 (48)

Z2 C2 Z2 C1
48 16

Z1

32

Work: 96 (zone 1: 32, zone 2: 64)
#ranks: 4
Average_Work = 96/4 = 24

Pre-Split:
• Zone 1: 32 / 24 = 1.3 = ~1
• Zone 2: 64 / 24 = 2.7 = ~3

• Split 1: 8x2 (16)
• Split 2,3: 4x6 (24)

Z2 C2 C1 Z2 C1
24 16

Z2 C2 C2
24

Z1

32

Work: 96 (zone 1: 32, zone 2: 64)
#ranks: 4
Average_Work = 96/4 = 24

Pre-Split:
• Zone 1: 32 / 24 = 1.3 = ~1
• Zone 2: 64 / 24 = 2.7 = ~3

• Split 1: 8x2 (16)
• Split 2,3: 4x6 (24)

Z2 C2 C1 Z2 C1
24 16

Z2 C2 C2
24

Z1 C1

24

Z1 C2
8

Zone 1 is too large: 32 /24 = 1.33
• Split Z1, C1: 6x4 = 24
• Split Z1, C2: 2x4 = 8

Work: 96 (zone 1: 32, zone 2: 64)
#ranks: 4
Average_Work = 96/4 = 24

Pre-Split:
• Zone 1: 32 / 24 = 1.3 = ~1
• Zone 2: 64 / 24 = 2.7 = ~3

• Split 1: 8x2 (16)
• Split 2,3: 4x6 (24)

Z2 C2 C1 Z2 C1
24 16

Z2 C2 C2
24

Z1 C1

24

Z1 C2
8

Zone 1 is too large: 32 /24 = 1.33
• Split Z1, C1: 6x4 = 24
• Split Z1, C2: 2x4 = 8

Assign Zones to Ranks:
• R0: Z1C1 – 24
• R1: Z2C2C1 – 24
• R2: Z2C2C2 – 24
• R3: Z2C1 – 16, Z1C2 – 8 (24)

SPECIAL OPTIONS – LINE DECOMP

Can specify 1 or 2 ordinals which a zone should not be split
• This is so a “line solver” can keep all cells in a column from the specified surface on the same

rank. Speeds up solver since no communication on column of cells.

Minimum ordinal size – currently set to 2 but will override if cannot generate a good
decomposition. Enhancement is to make user-settable.

24 24 16
R1 R2 R3

8 24
R3 R0

Zone 1 Zone 2

CGNS_DECOMP

Would like to know “goodness” of a decomposition prior to running analysis code

Gives statistics about a parallel decomposition
Runs in serial, but uses same algorithm as used in parallel

Statistics:
• What processor(s) is a zone assigned to
• Size on the processor
• “Surface expansion”

• Histogram showing work per rank
• Work histogram showing mean and median
• Communication map – what ranks communicate with each other for each zone
• Decomposition penalty – max work / avg work

Load Balance Factor = 1.4

Load Balance Factor = 1.1

ADDITIONAL WORFLOW APPLICATIONS

CPUP: Serial application to join file-per-rank structured CGNS into single file
Can add “processor_id” cell variable to file to help visualize decomposition

STRUC_TO_UNSTRUC: Convert a structured mesh into an unstructured mesh

CONCLUSIONS / FUTURE WORK

Implemented an algorithm for efficiently decomposing structured CGNS models

Used in production CFD code for a few years
Used on wide range of model sizes and processor counts
• Billions of cells and 10’s to 100’s thousand ranks…

Future Work:
• Better affinity to minimize communication
• Assign minimum work to zone 0 since it usually has more “busy work”
• See what might be needed for GPUs
• Better elimination of “outlier” rank(s)
• Better control of minimum zone size

