
PROV-IO+: A Provenance Framework
for Scientific Data on HPC Systems

Runzhou Han1, Mai Zheng1, Suren Byna2, Houjun Tang3, Bin Dong3, Dong Dai4

Yong Chen5, Dongkyun Kim5, Joseph Hassoun5, David Thorsley5, Matthew
Wolf5

1Iowa State University 2The Ohio State University 3Lawrence Berkeley National Laboratory
4University of North Carolina at Charlotte 5Samsung

1

HDF5 User Group (HUG) Meeting
Columbus, Ohio, August 2023

Motivation

2

Scientists Want to Know Their Workflows Better

Input
DataInput

DataInput
Data

Task 1

HPC Workflow
Intermediate

Data
Intermediate

Data 1 Task 2
Intermediate

Data
Intermediate

Data 2
Task 3

Output
Data
Output

Data

Supercomputer

3

• Workflows running on HPC systems are complicated

Scientists Want to Know Their Workflows Better

Which set of
hyperparameters have

been used? Which set of
data preselection has the
best training accuracy? …

Which dataset slows down
the training process?

Where does the
bottleneck take place? …

4

• Scientists could have a variety of questions about the workflow

Input
DataInput

DataInput
Data

Task 1

HPC Workflow
Intermediate

Data
Intermediate

Data 1 Task 2
Intermediate

Data
Intermediate

Data 2
Task 3

Output
Data
Output

Data

Provenance Framework Is Designed to Help

5

• Provenance Frameworks are used to collect execution metadata
• E.g., PASS (ATC’06), PASSv2 (ATC’09), Komadu (JORS’15), ProvLake (eScience’19)

Input
DataInput

DataInput
Data

Task 1

HPC Workflow
Intermediate

Data
Intermediate

Data 1 Task 2
Intermediate

Data
Intermediate

Data 2
Task 3

Output
Data
Output

Data

Provenance
Framework

Track and store workflow
provenance

Query dataset and task
information

Query configuration
information

Limitations of State-of-the-art

• Limitation 1: Granularity
• Cannot cover inner hierarchies of scientific data or detailed I/O operations

6

HDF5
File

File-level Information:
Covered

Existing
Provenance
Frameworks

Limitations of State-of-the-art

• Limitation 1: Granularity
• Cannot cover inner hierarchies of scientific data or detailed I/O operations

7*HDF5 hierarchy figure from HDF5 official website: Introduction to HDF5 (hdfgroup.org)

Zoom inHDF5
File

File-level Information:
Covered

HDF5 Inner Hierarchy Information:
Not Covered

Existing
Provenance
Frameworks

https://portal.hdfgroup.org/display/HDF5/Introduction+to+HDF5

Limitations of State-of-the-art

• Limitation 2: Compatibility & Portability
• Heavy dependencies on third party tools which are difficult to port (e.g.,

“Komadu”)

9
Komadu Dependencies

Limitations of State-of-the-art

• Limitation 3: Transparency
• Scientists have to instrument workflows with specific APIs manually (e.g.,

“ProvLake”)

10

…
Initialize a provenance instance

An Example of Instrumenting Workflow with ProvLake

Insert tracking APIs at multiple
hierarchies into the workflow loop

Finalize provenance instance at
multiple hierarchies

Approach

14

Survey on Practical Needs of Domain
Scientists
• Discussed with four research teams from different domains
• Learn about their workflow & provenance needs

15

Name Top Reco DASSA H5Bench Megatron-LM

Domain GNN for physical emulation acoustic sensing synthetic, performance
benchmarking

large language model

Name Top Reco DASSA H5Bench Megatron-LM

Domain GNN for physical emulation acoustic sensing synthetic, performance
benchmarking

large language model

Provenance
need

metadata version control lineage of data products I/0 stats & performance
bottleneck

checkpoint-config.
consistency

Survey on Practical Needs of Domain
Scientists
• Discussed with four research teams from different domains
• Learn about their workflow & provenance needs

16

Survey on Practical Needs of Domain
Scientists
• Summary of provenance needs

18

We want to know …

Data information
End-to-end data information including each intermediate state

Task information
Information of tasks at multiple granularities, e.g., program, function call

Relation information
Relations between above information

Configuration information
Workflow configurable parameters

Design PROV-IO+ Model Based on Needs

• Derived from W3C provenance data model (PROV-DM)
• Widely adopted by provenance frameworks (e.g., Komadu, ProvLake)
• Provides a mapping to Resource Description Framework (RDF) triples

19

Design PROV-IO+ Model Based on Needs

• PROV-IO+ model: a PROV-DM-compliant data model
• Interoperable with other PROV-DM-compliant data models (e.g.,

ProvLake/PROV-ML, Komadu model)

20

Agent

Activity
Entity

Design PROV-IO+ Model Based on Needs

• PROV-IO+ model: a PROV-DM-compliant data model
• Covers most of the metadata concepts & I/O operations in popular HPC I/O

libraries (e.g., HDF5, POSIX Syscall C library)

21

Design PROV-IO+ Model Based on Needs

• PROV-IO+ model: a PROV-DM-compliant data model
• Provides an interface for users to extend the PROV-IO+ model with new

concepts/relations per their needs

22

PROV-IO+ Framework

• Overview
• PROV-IO+ model

23

PROV-IO+ Framework

• Overview
• PROV-IO+ model
• Three main components

based on PROV-IO+ model
1. Tracking (blue)
2. Store (Green)
3. User engine (Red)

24

1

2

3

PROV-IO+ Framework

• Provenance tracker (blue)
• Track I/O operations

transparently by intercepting
library I/O

25

PROV-IO+ Framework

• Provenance tracker (blue)
• Track I/O operations

transparently by intercepting
library I/O

26

Zoom in

HDF5 Provenance VOL connector

PROV-IO+ Framework

• Provenance tracker (blue)
• Track I/O operations

transparently by intercepting
library I/O
• Support for popular I/O

libraries use by HPC workflows
• Provide a Python interface for

manually instrumentation

27

PROV-IO+ Framework

• Provenance store (green)
• Serialize provenance as RDF
• Avoid concurrent provenance

serialization by having each
thread write to its own file
• Consolidate provenance files

offline

28

PROV-IO+ Framework

• User engine (red)
• A configuration interface for

user
• Provenance query with

SPARQL
• Provenance visualization

29

PROV-IO+ Framework

• Overview
• PROV-IO+ model
• Three main components based

on PROV-IO+ model
• Support for containerized

environment
• Newer HPC systems may have

containerized job management
(e.g., Singularity)

30

PROV-IO+ Framework

• Overview
• PROV-IO+ model
• Three main components based

on PROV-IO+ model
• Support for containerized

environment
• Newer HPC systems may have

containerized job management
(e.g., Singularity)

31

For more design/implementation details,
please refer to PROV-IO+ paper at:
https://arxiv.org/abs/2308.00891

https://arxiv.org/abs/2308.00891

Evaluation

32

Experimental Methodology

• Platforms
• Cori @LBNL (traditional workflows)

• Up to 64 nodes (4096 MPI ranks)
• Measured workflows

• Top Reco (GNN for physical emulation)
• DASSA (acoustic sensing)
• H5Bench (synthetic)

• Samsung supercomputer (containerized workflows)
• 8 A100 GPUs (due to strict quota)
• Measured workflow

• Megatron-LM (large language model)

33*Picture from LBNL website

Name Top Reco DASSA H5Bench Megatron-LM

Domain GNN for physical emulation acoustic sensing synthetic, performance
benchmarking

large language model

Provenance
need

metadata version control lineage of data products I/0 stats & performance
bottleneck

checkpoint-config.
consistency

Information
tracked

1. hyperparameter
2. data preselection
3. training accuracy

1. program name
2. I/O API (HDF5)

3. file/dataset/attr

1. I/O API (HDF5)
2. I/O API duration

3. user/rank/program/file

1. checkpoint info
2. training loss

3. model configuration

Experimental Methodology

• Information tracked for each workflow

34

Tracking Overhead

• Over all experiments, tracking overhead is 11% at maximum
• More than 97% of the experiments has overhead less than 3%

35

Tracking overhead on DASSA
workflow

11% Overhead

Storage Overhead

• Provenance size increases linearly with experimental scale

36

(d) Megatron-LM

Comparison with IBM ProvLake

• PROV-IO+ has lower tracking overhead in experiments with more
training epochs
• PROV-IO+ always has less storage overhead

38
Comparison on Top Reco Workflow

(a) Tracking overhead (b) Storage overhead

WestSac.
tmds

Provenance Query & Visualization

• Data lineage backward tracing example with DASSA

39

decimate
WestSac.

tmds
(input)

Decimate.
h5

decimate.
h5

(output)

WestSac.h5
(intermediate data)

WestSac.h5
(intermediate data)tdms2h5

What’s the origin
of the output data

decimate.h5?

Provenance Query & Visualization

• Data lineage backward tracing example with DASSA

40

WestSac.
tmds tdms2h5 decimate

WestSac.
tmds

(input)

Decimate.
h5

decimate.
h5

(output)

WestSac.h5
(intermediate data)

WestSac.h5
(intermediate data)

Visualized
Provenance

Example SPARQL query to locate 1st level
predecessor:
Q1: Decimate.h5 prov:wasAttributedTo ?
Q2: ? prov:wasAttributedTo decimate

 provio:wasReadBy H5Fopen
2nd level predecessor can be obtained with
similar query.

Conclusion & Future Work

• Conclusion
• Identified domain scientists’ real provenance needs
• Built PROV-IO+ framework under the guidance of PROV-IO+ model
• Evaluated PROV-IO+ framework on two HPC systems

• PROV-IO+ can address domain scientists’ concerns effectively & efficiently

• Future work
• More efficient provenance post processing
• Advanced query API to help users analyze workflows more efficiently

43

Conclusion & Future Work

• Conclusion
• Identified domain scientists’ real provenance needs
• Built PROV-IO+ framework under the guidance of PROV-IO+ model
• Evaluated PROV-IO+ framework on two HPC systems

• PROV-IO+ can address domain scientists’ concerns effectively & efficiently

• Future work
• More efficient provenance post processing
• Advanced query API to help users analyze workflows more efficiently

44

Source code is available at:
https://github.com/data-storage-lab/prov-io
Docker image is available at:
https://hub.docker.com/repository/docker/rzhan/prov-io/general

Thank You
&

Questions?

https://github.com/data-storage-lab/prov-io
https://hub.docker.com/repository/docker/rzhan/prov-io/general

Backup Slides

45

Containerization Overhead

• Negligible containerization overhead observed in Megatron-LM use
case on Samsung Supercomputer

46(b) Containerized workflow(a) Non-containerized workflow

WestSac.
tmds

How to Query Provenance

• Data lineage backward tracing example with DASSA

47

decimate
WestSac.

tmds
(input)

Decimate.
h5

decimate.
h5

(output)

WestSac.h5
(intermediate data)

WestSac.h5
(intermediate data)tdms2h5

What’s the origin
of the output data

decimate.h5?

How to Query Provenance

• Data lineage backward tracing example with DASSA

48

WestSac.
tmds tdms2h5 decimate

WestSac.
tmds

(input)

Decimate.
h5

decimate.
h5

(output)

WestSac.h5
(intermediate data)

WestSac.h5
(intermediate data)

Corresponding Provenance

How to Query Provenance

• Data lineage backward tracing example with DASSA

50

Step 1. Search the program
whose output is decimate.h5

Example SPARQL query:
 Decimate.h5 prov:wasAttributedTo
?

How to Query Provenance

• Data lineage backward tracing example with DASSA

51

Step 2. Search the input data of
decimate

Example SPARQL query:
? prov:wasAttributedTo
decimate
 provio:wasReadBy H5Fopen

How to Query Provenance

• Data lineage backward tracing example with DASSA

52

Step 3&4. Repeat Step 1&2.
Look for the program which
created WestSac.h5 and then
search the input of that
program

LoC of query = N * 3
(N is level of predecessor data object)

