
HDF5 in the Julia Ecosystem

Mark Kittisopikul, Ph.D.

Software Engineer, SciComp, Janelia, HHMI

HDF5 User Group Meeting

August 16, 2023



Why Julia?

An interactive, dynamic, open source, and natively JIT compiled language 

HDF5 Julia Packages

Distributing the C library and binding the C API

HDF5.jl Usage

Example of basic usage of the HDF5.jl package

Future directions

Making HDF5 easier to use and abstract interfaces

HDF5 in the Julia Ecosystem



HDF5 in the Julia 

Ecosystem

Why Julia?

2023



https://news.mit.edu/2018/julia-language-co-creators-win-james-

wilkinson-prize-numerical-software-1226

We want a language that's open source, with a liberal 
license.

We want the speed of C with the dynamism of Ruby.

We want a language that's homoiconic, with true macros like 
Lisp, but with obvious, familiar mathematical notation 
like Matlab.

We want something as usable for general programming as 
Python, as easy for statistics as R, as natural for string 
processing as Perl, as powerful for linear algebra as Matlab, 
as good at gluing programs together as the shell. 

Something that is dirt simple to learn, yet keeps the most 
serious hackers happy.

We want it interactive and we want it compiled.

Why We Created Julia

Why Julia?

https://julialang.org/blog/2012/02/why-we-created-julia/

14 February 2012 | Jeff Bezanson Stefan Karpinski Viral B. Shah Alan Edelman



HPC adoption of Julia

Why Julia?



• Built-in C foreign function interface

• Procedural form

ccall((:H5open, libhdf5), herr_t, ())

• Macro form

@ccall libhdf5.H5open()::herr_t

• Multiple Dispatch (multimethods)

• C compatible primitives

• julia> Cint

Int32

• C compatible structs with 

reflection

• C function pointers for callbacks

Useful properties of Julia for using HDF5

Why Julia?

julia> struct Foo
x::Float32
y::Float64

end

julia> fieldtypes(Foo)
(Float32, Float64)

julia> fieldoffset.(Foo, (1,2))
(0x0000000000000000, 0x0000000000000008)



HDF5 in the Julia 

Ecosystem

HDF5 Julia 
Packages

https://github.com/JuliaPackaging



HDF5 Julia Packages

108 Direct Dependents
424 Indirect Dependents

https://juliahub.com/ui/Packages/HDF5/L7Dga/0.16.15?page=2



HDF5.jl – Julia API

HDF5_jll.jl – C Library

SZIP compression

MPI



HDF5_jll.jl: Packaging the C Library

HDF5 Julia Packages

Tracking the latest stable release (1.14.1)

192 Binary Tarball Artifacts

Processor architectures:
i686, x86_64, aarch64, armv6l, armv7l, powerpc64le

Operating systems: Windows (MINGW), Linux, macOS, FreeBSD
C standard libraries: glibc, musl
gfortran versions: 3, 4, and 5
Libstdc++ versions: cxx03, cxx11
MPI: mpich, openmpi, microsoftmpi, mpitrampoline

https://github.com/JuliaBinaryWrappers/HDF5_jll.jl

Erik Schnetter
Research Technologies Group Lead
Perimeter Institute for Theoretical Physics
Technology Services

https://github.com/JuliaBinaryWrappers/HDF5_jll.jl


HDF5.jl: Current Maintainers

HDF5 Julia Packages

• Mustafa Mohamad (Assistant Professor, 
UCalgary) is the lead maintainer of HDF5.jl, 
JLD.jl, and MAT.jl

• Mark Kittisopikul (Software Engineer, Janelia, 
HHMI) has been expanding low-leel API 
coverage, especially with chunking

• Simon Byrne (Lead Software Developer, CliMA, 
CalTech) has been working on package 
organization, filter interface, virtual datasets, 
and parallelization



HDF5.jl: Automated Generation of Low-Level Bindings 
via LibHDF5.jl

HDF5 Julia Packages

https://github.com/mkitti/LibHDF5.jl



HDF5.API: Low Level API Bindings via ccall

HDF5 Julia Packages



HDF5.jl: bind macro statements

HDF5 Julia Packages



HDF5.API: Low Level API Bindings via ccall

HDF5 Julia Packages



HDF5 in the Julia 

Ecosystem

HDF5.jl 
Usage

Graphic artist: https://github.com/cormullion



















Simon Byrne



HDF5 in the Julia 

Ecosystem

Future 
Directions



Ease of Use 

Future Directions

• Update documentation, add links to HDF5 Doxygen

• Expose efficient iteration interfaces via Channels and co-routines

• Use package extensions to automatically load filter plugins

• Improve tab completion



Abstraction

• Julia’s type system has an N-dimensional AbstractArray interface.

• Should a HDF5 dataset implement the AbstractArray interface?

• DiskArrays.jl implements abstraction for chunked array read from disk

• Currently implemented by NetCDF.jl and Zarr.jl

• Abstract plugin code for use by JLD2.jl and Zarr.jl

Future Directions





Thank you



Mark Kittisopikul, Ph.D.

Software Engineer II

Scientific Computing Software

kittisopkulm@janelia.hhmi.org

https://dot.cards/mkitti

mailto:kittisopkulm@janelia.hhmi.org

