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Storage and I/O Issues in HPC Systems

SUPERCOMPUTER i PEAK i MEMORY ESTORAGE BAND | o

SYSTEM YEAR CLASS i FLOPS (PF) I  SIZE (MS) I -WIDTH (SB)! MS/SB PF/SB The compute capability is ever-
H i i i growing, but storage capacity

Cray Jaguar 2008 1 PFLOPS 11.75 PFLOPS | 360 TB ! 240 GB/s! 1.5k 7.3k d bandwidth q lopi

Cray Blue Waters 2012 10 PFLOPS  113.3 PFLOPS ! 1.5 PB i 1.1 TB/s! 1.3k 13.3k and bandwidth are developing

Cray CORI 2017 10 PFLOPS | 3@ PFLOPS ! 1.4 PB P17 /s [G)  @.8k 17k much more slowly

IBM Summit 2018 100 PFLOPS ! 200 PFLOPS ! > 10 PB ! 2.5 TB/s! > 4k 80k

(*) when using burst buffer (**) counting only DDR4 source: F. Cappello (ANL)

SUPERCOMPUTER PEAK MEMORY STORAGE BAND

SYSTEM YEAR CLASS FLOPS (PF) SIZE (MS) -WIDTH (SB) MS/SB PF/SB

Fujitsu Fugaku 2020 "ExaScale" 537 PFLOPS 4.85 PB > 1.5 TB/s > 3.23k 358k

AMD Frontier 2021 ExaScale 1.6 EFLOPS 9.2 PB [€) 10 TB/s > 0.92k 160k

Intel Aurora (#) future ExaScale > 2 EFLOPS > 10 PB [€)) >= 25 TB/s > 0.40k 80k

(*) Rpeak, Top-500 as of November 2020 (**) DDN Newsroom

(a) aggregated memory (CPU DDR + GPU HBM)
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Data Management Issues for Scientific Applications

application data scale bottleneck reduce by
use up filesystem
HAcc zo PB (26 PB in total) 1 ox
cosmology simulation  one-trillion-particle Mira@ANL in need
o 5h30m
CES M 50/) vs 20% to store 1 0"
climate simulation storage in hardware NSF Blue Waters in need

budget, 2017 vs 2013 1-TBps I/O

saturate
APS'U 1 02 PB connection 1 00"
High-Energy X-Ray Brain Initiatives 100 GBps bandwidth  in need
Beams Experiments
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Our Solution — Error-Bounded Lossy Compression

Floating point data set

(numerical simulation P((sgiclc;r)n
([ [ o of the brain):
2 ° 1 (FP-type) 1 0. 1 or higher I ———
lossless on scientific datasets reduction ratio in need by bl
Sign+
. . . . E t
industry high in reduction rate, xponen

lossy compressor (JPEG) but not suitable for HPC

absolute error bound (infinity-norm)

1)

2) pointwise relative error bound
3) RMSE error bound (2-norm)
4)
5)

need diverse

compression modes fixed bitrate

satisfying post-analysis requirements

SZ Di and Cappello 2016, Tac et al. 2017,
Xinetal. 2018, Tian etal. 2020

> prediction-based lossy compressor framework for scientific data
> strictly control the global upper bound of compression error
> implemented on CPU, GPU, FPGA Figure from P. Lindstrom (LLNL)

> integrated in I/O libraries (HDF5, ADIOS, PnetCDF) Lossy compression for scientific data at varying reduction ratio
(10:1 to 250:1, left to right)
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SZ Compression Pipeline
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S6M from DOE
S4M from NSF
S1M from Aramco

WINNER
]

Core R&D Team

Argonne National Laboratory

Dr. Franck Cappello, Dr. Sheng Di
Dr. Robert Underwood

Indiana University
Dr. Dingwen Tao, Jiannan Tian, Sian Jin
Chengming Zhang, Boyuan Zhang

Clemson University
Dr. Jon Calhoun, Griffin Dube

Others
Dr. Xin Liang (UKY), Dr. Kai Zhao (UAB)
Jinyang Liu (UCR), Cody Rivera (UIUC)

https://github.com/szcompressor
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SZ: A Lossy Compression Framework for Scientific Data

Established in 1963, the R&D 100 Awards is the only S&T (science and technology) awards
competition that recognizes new commercial products, technologies and materials for their
technological significance that are available for sale or license. The R&D 100 Awards have long
been a benchmark of excellence for industry sectors as diverse as telecommunications, high-
energy physics, software, manufacturing, and biotechnology. This 2021 R&D 100 winner is listed
below, along with its respective category.

SZ

PRODUCTION RESEARCH

| | l |

GENERIC SPECIALIZED GENERIC SPECIALIZED

1 T T 1 T I 7

CPU GPU Seismic Quantum X-Ray Material ~ Automatic =~ FPGA  Vectorized  Critical Point  DNN
l J ! l l ﬁ‘—l Imaging  Chemistry  Crystallography MD Par-Tuning { Preserving {
SZ14 S7Z21 SZ3 SZx  cuSZ KSZ { { J J { WAVESZ vecSZ J DeeprSZ
(cubA)  (kokkos) Interp-SZ  PaSTRI-SZ Roibin-SZ MMD-SZ SZauto cpSZ

SZ compression framework family tree.

Al use-cases:

DNN model compression

DNN training data compression
Reducing DNN memory consumption
Accelerating distributed training

HPC use-cases:

* Reducing storage footprint .
* Accelerating I/O & communication
* Accelerating visualization

* Reducing streaming intensity

* Running larger problems .
* Checkpoint/restart



https://github.com/szcompressor

H5-SZ Compression Filters

SZ

class hdf5plugin.SZ(absolute=None, relative=None, pointwise_relative=None) %o
hSpy.Group.create_dataset 'S compression arguments for using SZ filter.

It can be passed as keyword arguments:

f = h5py.File('test.h5', 'w')

f.create_dataset(
'sz',
data=numpy. random. random(100),
sxkhdf5plugin.SZ())

f.close()

This filter provides different modes:

Absolute mode:

To use, set the absolute argument. It ensures that the resulting values will
be within the provided absolute tolerance.

f.create_dataset(
'sz_absolute',
data=numpy. random. random(100),
skhdf5plugin.SZ(absolute=0.1))

Relative mode: o use, set the relative argument. It ensures that the resulting values will

be within the provided relative tolerance. The tolerance will be computed by multiplying the
provided argument by the range of the data values.

f.create_dataset(
'sz_relative',
data=numpy. random. random(100),
sxhdf5plugin.SZ(relative=0.01))

INDIANA UNIVERSITY BLOOMINGTON

f.create_dataset(
'sz_relative',
data=numpy.random. random(100),
skhdf5plugin.SZ(relative=0.01))

Point-wise relative mode:

To use, set the pointwise_relative argument. It ensures that each
grid point of the resulting values will be within the provided relative tolerance.

f.create_dataset(
'sz_pointwise_relative',
data=numpy.random. random(100),
sxhdf5plugin.SZ(pointwise_relative=0.01))

For more details about the compressor SZ.

filter_id= 32017

filter_name='sz’

$Z3 is more modularized and composable, providing
SZ3 o greater flexibility in configuring compression pipelines.

class hdf5plugin.SZ3(absolute=None, relative=None, norm2=None, peak_signal_to_noise_ratio=None)

hSpy.Group.create_dataset 'S compression arguments for using SZ3 filter.
For more details about the compressor, see SZ3.

filter_id= 32024

filter_name= 'sz3'




Undergoing Projects

» CSSI: Frameworks: FZ: A Fine-tunable Cyberinfrastructure Framework to Streamline Specialized Lossy Compression Development

» Goal: To create a framework, called FZ, that revolutionizes the development of specialized lossy compressors by providing a
comprehensive ecosystem to enable scientific users to intuitively research, compose, implement, and test specialized lossy
@ compressors from a library of pre-developed, high-performance data reduction modules optimized for heterogeneous platforms.

» HDF5 Role: The constructed compressor is instantiated as a dynamic library, which can be loaded by I/O libraries such as HDF5
through various languages, including C++ and Python.

» CAREER: A Highly Effective, Usable, Performant, Scalable Data Reduction Framework for HPC Systems and Applications

| » Goal: To research and develop novel algorithms and software to improve the efficacy, usability, performance, and scalability of
@ data reduction for HPC systems and applications.

» HDF5 Role: We offer a series of optimizations for compression coupled with parallel writing in HDF5 library for HPC applications.
» CSSI: Elements: ROCCI: Cyberinfrastructure for In Situ Lossy Compression Optimization Based on Post Analysis Requirements

» Goal: To develop a requirement-oriented compression cyberinfrastructure (ROCCI) for data-intensive domains, which can select
@ and run the best fit lossy compressor automatically at runtime, in terms of user's requirement on their post hoc analysis.

» HDF5 Role: ROCCI provides a series of functions that transparently configure compression parameters in the HDF5 environment.

w INDIANA UNIVERSITY BLOOMINGTON



CSSI: Frameworks: FZ: A Fine-tunable Cyberinfrastructure Framework to Streamline

Specialized Lossy Compression Development

Franck Cappello, Sheng Di, University of Chicago [Award #2311875]
Dingwen Tao, Indiana University [Award #2311876]
Hangi Guo, Ohio State University [Award #2311877]
Kai Zhao, Florida State University [Award #2311878]

Summary:

This project aims to create a framework, called FZ, that revolutionizes the development
of specialized lossy compressors by providing a comprehensive ecosystem to enable
scientific users to intuitively research, compose, implement, and test specialized lossy
compressors from a library of pre-developed, high-performance data reduction modules
optimized for heterogeneous platforms.

Approach:

This project builds FZ by adapting, combining, and extending multiple existing capabilities from SZ

lossy compressor, LibPressio unifying compression interface, OptZConfig optimizer of compressor

configurations, Z-checker and QCAT compression quality analysis tools, and Paraview and VTK
visualization tools. Specifically, it builds three main components:

*  Programming interfaces and compressor generator: create new compressors from high-level
languages such as Python and optimize their execution.

* New compression modules: Refactor SZ lossy compressors to enable fine-grained composability
of a large diversity of data transformation modules and integrate non-uniform compression
capabilities, new preprocessing, decorrelation, approximation, and entropy coding modules.

* Interactive visualization, quality assessment, and GUI tools: adapt and extend existing
capabilities to automatically search optimized lossy compression module compositions and to
identify relevant compression ratio, speed, and quality trade-offs for their use cases.

INDIANA UNIVERSITY BLOOMINGTON

a) Original data from QMCPACK. b) Specialized
compressor (CR=54). c) Generic compressor (CR=27).

Scientific applications
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Fig. FZ design overview.




FCBench: 8 CPU-based and 5 GPU-based compression
methods on 33 real-world datasets assembled in the

Compression Benchmark

& Watch 1 ~

FCBench Public

¥ 1branch © 0tags Go to file Add file ~ <> Code ~

FCBench: Cross-Domain Benchmarking of Lossless Compression
for Floating-point Data: Uniting HPC and Database Communities

¥ main ~

ABSTRACT

behavior Data Staging Data Query
While both the database and high-performance computing (HPC) File Handler Query Engine papersub2023 Update README for evaluate and compare 6729e94 3 weeks ago ® 14 commits
communities utilize lossless compression methods to minimize T =T
floating-point data size, a disconnect persists between them. Each progreny l HDFSFile 20  HDFS runtime §  Userspeciied
community designs and assesses methods in a domain-specific man- Sxegeton - E — | grw—m code integrated evaluation and comparison 3 weeks ago
Arran, & mpression [l QueryLike
ner, making it unclear if HPC compression techniques can benefit by Field Filter Operations
datab‘asel a}l)plic‘ations, ordviFe versa. \:lhth thedHI.’C ;9mmity in- = scripts integrated evaluation and comparison 3 weeks ago
creasingly leaning towards in-situ analysis and visualization, more =2
floating-point data from scientific simulations are being stored in Impl. T =3 [ README.md evaluate/compare README last month
databases like Key-Value Stores [73], and queried using in-memory e
retrieval paradigms. This trend underscores the urgent need for [ OnOlk I In-Memory ]
a collective study of these compression methods’ strengths and ‘= README.md

limitations, based on a broad array of data from various domains.
In our study, we extensively evaluate the general and database
performance of eight CPU-based and five GPU-based compres-
sion methods developed by both communities, using 33 real-world
datasets assembled in the Floating-point Compressor Benchmark
(FCBench). Our goal is to offer insights on these compression meth-
ods that could assist researchers in selecting existing methods or
developing new ones for integrated database and HPC applications.

1 INTRODUCTION

Floating-point data is widely used in various domains, such as
scientific simulations, geospatial analysis, and medical imaging [16,
23, 58]. As the scale of these applications increases, compressing
floating-point data can help reduce data storage and communication
overhead, thereby improving performance [56].

Why lossless compression? Using a fixed number of bits (e.g., 32
bits for single-precision data) to represent real numbers often results
in rounding errors in floating-point calculations [18]. Consequently,
system designers favor using the highest available precision to min-
imize the problems caused by rounding errors [57]. Similarly, due
to concerns about data precision, lossless compression is preferred
over lossy compression, even with lower compression ratios, when
information loss is not tolerable.

Figure 1: Integrating HPC and database with HDF5 and Dataframes.

1.1 Study Motivation

Both the HPC and database communities have developed lossless
compression methods for floating-point data. However, there are
fundamental differences between the floating-point data of these
two domains. Typically, numeric values stored in database systems
are not necessarily in order. To the best of our knowledge, the com-
pression methods for floating-point data developed by the database
community are specialized for time-series data. On the other hand,
HPC systems deal with structured high-dimensional floating-point
data from scientific simulations or observation devices, such as
satellites and telescopes. In other words, both communities have de-
veloped floating-point data compression methods, but for different
data from their respective domains. Therefore, an interesting ques-
tion is whether the compression methods developed in one community
can work on the data from the other community or vice versa.
Answering this question becomes urgent due to the trend of
increasingly integrated HPC and database systems. For example,
the Key-Value format and Map/Reduce paradigm have established
many successful Big Data applications [49]. Due to the fine-grained
data access ability of Key-Value Stores (KVS), HPC systems have
embraced them not only for resource management [73] but also for
in-situ analysis and visualization [8, 13, 20, 35]. We see emerging
tools like Seer-Dash [21] that use Mochi’s Key-Value storage [55]

INDIANA UNIVERSITY BLOOMINGTON

FCbench: Cross-Domain Benchmarking of Lossless

Compression for Floating-point Data: Uniting HPC and
Database Communities

We benchmarked eight CPU-based and five GPU-based lossless compression methods on 33 datasets from

scientific simulation, time series, observation and database transactions domains.

Test system

The experiments are carried out on a Chameleon Cloud compute node with 2 Intel(R) Xeon(R) Gold 6126 CPUs,
2.60GHz, 187 GB RAM. The compute node also has 1 Nvidia Quadro RTX 6000GPU with 24 GB GPU Memory. The

node compilers are GCC/G++9.4, CUDA 11.3, CMAKE 3.25.0 and python 3.8

o setup directories

mkdir code data experiments output software



Efficient Data Reduction Techniques for HPC Applications

o

o

o

[IPDPS’17] Significantly Improving Lossy Comp. for Scientific Data Based on Multidimensional Prediction and Error-Controlled Quantization. D. Tao, et al.

[TPDS’19] Optimizing Lossy Compression Rate-Distortion for Automatic Online Selection between SZ and ZFP.

[ICDE’22] Significantly Improving Prediction-Based Lossy Compression Via Ratio-Quality Modeling.

[CLUSTER’18] Error-Bounded Lossy Compression for Two-Electron Integrals in Quantum Chemistry. (Best Paper Award)
[IPDPS’20] Understanding GPU-Based Lossy Compression for Extreme-Scale Cosmological Simulations.

[HPDC’21] Adaptive Configuration of Lossy Compression for Cosmology Simulations via Fine-Grained Rate-Quality Modeling.
[HPDC’22] TAC: Optimizing Error-Bounded Lossy Compression for Three-Dimensional Adaptive Mesh Refinement Simulations.
[PPoPP’20] waveSZ: A Hardware-Algorithm Co-Design of Efficient Lossy Compression for Scientific Data.

[PACT’20] cuSZ: An Efficient GPU Based Error-Bounded Lossy Compression Framework for Scientific Data.

[IPDPS’21] Revisiting Huffman Coding: Toward Extreme Performance on Modern GPU Architectures.

[IPDPS’22] Optimizing Huffman Decoding for Error-Bounded Lossy Compression on GPUSs.
[ICS’23] GPULZ: Optimizing LZSS Lossless Compression for Multi-byte Data on Modern GPUs.
[HPDC’23] FZ-GPU: A Fast and High-Ratio Lossy Compressor for Scientific Computing Applications on GPUs.

Compression-accelerated Communication and I/0O in HPC Systems

o

[ICS’22] CEAZ: Accelerating Parallel I/0 via Hardware-Algorithm Co-Designed Adaptive Lossy Compression.
[PACT’22] HBMax: Optimizing Memory Efficiency for Parallel Influence Maximization on Multicore Architectures.

High-Performance Deep Learning Training and Inference Systems

o

[HPDC’19] DeepSZ: A Novel Framework to Compress Deep Neural Networks by Using Error-Bounded Lossy Compression.
[DAC’20] RTMobile: Beyond Real-Time Mobile Acceleration of RNN for Speech Recognition.
[FPL'22] H-GCN: A Graph Convolutional Network Accelerator on Versal ACAP Architecture.

[ICS’21] ClickTrain: Efficient and Accurate End-to-End Deep Learning Training via Fine-Grained Architecture-Preserving Pruning.

[VLDB’22] COMET: A Novel Memory-Efficient Deep Learning Training Framework by Using Error-Bounded Lossy Compression.
[ICS’23] HEAT: A Highly Efficient and Affordable Training System for Collaborative Filtering Based Recommendation on CPUs.

D. Tao, et al.

S. lin, et al.

A. Gok, D. Tao, et al.

S. Jin, et al.

S. Jin, et al.

D. Wang, et al.
J. Tian, et al.
J. Tian, et al.

J. Tian, et al.

C. Rivera, et al.
B. Zhang, et al.
B. Zhang, et al.

C. Zhang, et al.
X. Chen, et al.

S. Jin, D. Tao, et al.

D. Wang, et al.

P. Dong, et al.

C. Zhang, et al.
C. Zhang, et al.

S. lin, et al.

C. Zhang, et al.

Selected Publications (with my students underlined)

Generic

Domain
Specific

GPU/FPGA
Acceleration



SC’22: Accelerating Parallel Write via Lossy Compression with HDF5

)\

\{

<
— <
L (2) Lossy Compression
—— With Collective Write
= <
—_— (3) Overlap Compression & 1/0
e
S, P l/O
. <
r . =

e —————— (4) Compression Scheduling Optimization Compression (1) Original

Scientific Achievement: This requires a compression ratio prediction!
A parallel write solution that integrates predictive lossy compression with the asynchronous - Estimate the offset of write operation

I/O feature in HDF5, which overlaps I/O latency with compression. ) ) e

. . Write operation can only be initiated after
Slgnlflcance and |mpaCt: the offset been assigned for all data blocks
« Evaluate on real-world scientific applications, Nyx and VPIC, with up to 4096 cores on Summit.

* Improve the parallel-write performance by up to 4.5% and 2.9%x compared to the HDF5 write without Performance comparison |,
compression and with the SZ lossy compression filter, respectively, with only 1.5% storage overhead. [ moptimization Dcompression @write Doverflow |

Research Details: Reordering %
Overlap

« Extend the prediction model to estimate the offset and performance of parallel I/O.
Previous V2777777777777

*  Overlap I/O with compression.
o . : , Original
«  Optimization for reorder compression tasks to achieve higher performance. T e e o e e

Time (s)
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SC’23: In Situ Lossy Compression for Fast I/O in AMR Applications

DB: ori-re-1.h5

Scientific Achievement:

< g AMRIC is the first in situ AMR data compression framework that improve both I/0 costs and boost
& ‘; compression quality for AMR applications.
<§t ke Significance and Impact:
T © « Evaluate AMRIC on two real-world AMReX applications, WarpX and Nyx, with 4096 cores from Summit.
%) g' « AMRIC achieves up to 10.5% I/O performance improvement over the non-compression solution.
'5 8 « Upto 39% 1/0O and 81x CR improvement with better data quality over AMReX’s original solution.
F--------------------------------------I
AMReX E Preprocess Compressor HDFS5 filter |
——% Application | —, : Optimization Modification |! (;:- S
Time:8 6985 16-14 NYX AMR | Redundanc v SR En ! d ]
2 | - - | e
a / - - : Adaptive Mechanism : data SyStem
1 — |
O o e gy ey I
X a AMRIC
<§t a Research Details:
g % » Propose a compression-oriented in situ pre-processing workflow for AMR data
@)

» Optimize the state-of-the-art SZ lossy compressor’s efficiency on AMR data
’ * Overcome the gap between the HDF5 and AMR applications by modifying HDF5 filter
o R + Allowing the use of larger HDF5 chuck size which benefit compression ratio and throughput
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PPoPP’24: Enhance I/O Performance in Distributed DNN Training

" Offline Scheduling

With Parallel HDF5

I J«— Dataset Size —py Maximizing Data Reuse _ ( Parallel |

. ISP  (index List 0 -+ Reordered | Enhancing AR B Filesystems (PFS) ]« SOLAR determines read chunk size, which
! _ - . .| Index List 170 I ) . .

| A [rdexUist£5 -+ ] | SiePl ———p Step2 | TOOESE | g e /i Aggregating ] - t . two adjacent data samples in shuffled index
| o equests MPI-I0 | . . .

Tt e , Small Read Requests L J list worth loading in a chunk.

' Legend !

| , ! - ! .

.+ [ Operations  —» DataFlow ~ —» Dependency | Reordaios y — SOLAR aggregates small read requests into a
X : . ! Parallel | |

([ Optimizatons [ Jv0 Manager [ JV Hierarehy oW, ¥ s ) larger chunk read request

_________________________________________________________________________________________________________________

Significance and Impact

* Up to a10.9% increase in /O speed and
a 5.9x improvement in overall training performance
over a production-level framework.

» Outperforms state-of-the-art approaches with up

Research Details

* Propose SOLAR, a framework that enhances I/O performance for distributed training.

» Design three optimizations to maximize data reuse (reorder epoch order & samples in global
batch), achieve I/0 workload balance, and optimize data access pattern with parallel HDF5.

* Analyze that SOLAR has small impact on test accuracy.

«10' (a) Random (b) Sequential-Stride (c) Block-Sequential (d) Chunk . tO a 3.5" Speedup in I/O
e EIR ~ -| Access Pattern Observations

NEEEE I Unlike HPC applications, distributed training has random, non-consecutive access pattern.
51.00-i = i i % % - _ E - ~ | Pattern Time Norm’ed Speedup
£ |5 = = | |= = g - - - - -
Coni= = 2 |- 1= 1- - Random Access 645.864 203.42X 1.00x «—distributed training access pattern;
ws{= = — =|{=Z =1 £ _ | Sequential-stride Access  84.421 26.59% 7.65x «—inconsecutive access pattern;

- - - Z|]= = = . 5 ’ w/o random
om]= = = =|{= = = = - Block Sequential Access  30.537 9.62x 21.15x «—consecutive access pattern; huffle!
wl= == =12 2 2 E|]E o Chunk access 3.175 1.00x  203.42x «—chunk reading access pattern; shuttie:

a ; N

)
—
)
w

T
0

o

Rank
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