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Complex |/O stack!

« Using the HPC 1/O stack efficiently is a tricky problem
* Interplay of factors can affect I/O performance

« Various optimizations techniques available

* Plethora of tunable parameters

- Each layer brings a new set of parameters
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Metrics to the rescue?

- Darshan is a popular tool to collect I/O profiling
- Extended tracing mode (DXT) for a fine grain view

* Recorder and TAU are other I/O profiling tools

«  How to optimize the I/O of my application?
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What is the problem?

* There is still a gap between profiling and tuning

*  How to convert I/O metrics to meaningful information?
— Visualize characteristics, behavior, and bottlenecks
— Detect root causes of I/O bottlenecks
— Map 1I/O bottlenecks into actionable items

— Guide end-user to tune I/O performance
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Drishti

- Sanskrit word meaning “point of focus”
— Interactive web based analysis framework
— Pinpoint root causes of I/O performance problems
— Detects typical I/0O performance pitfalls
— Provide a set of actionable recommendations

«  Working to support multiple sources of I/O metrics
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Interactive Analysi

DARSHAN:
sample/jlbez_IO_test5.Linux_id1797024_12-1-78642-14680324743816948210_159.darshan

/gpfs/alpine/csc300/scratch/jlbez/vpic-brtnfld/results/vpic-hdf5-1662725/field_hdf5/T.1/fields_1.h5

OPERATIO! TRANSFE SPATIALITY

/gpfs/alpine/csc300/scratch/jlbez/vpic-brtnfld/results/vpic-hdf5-1662725/hydro_hdf5/T.1/hydro_proton_1.h5

OPERATIO! TRANSFER SPATIALITY

/gpts/alpine/csc300/scratch/jlbez/vpic-brtnfld/results/vpic-hdf5-1662725/hydro_hd£5/T.1/hydro_electron_1.hs

OPERATION TRANSFER SPATIALITY

/gpEs/alpine/csc300/scratch/jlbez/vpic-brtnfld/results/vpic-hd£5-1662725/particle_hdf5/T.1/proton_1.hs

OPERATIO! TRANSFE SPATIALITY

/gpfs/alpine/csc300/scratch/jlbez/vpic-brtnfld/results/vpic-hdf5-1662725/particle_hdf5/T.1/electron_1.h5
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Drishti Triggers

Level Description

HIGH High probability of harming I/0 performance.

Detected issues that could cause a significant negative impact on the /0 performance.
The confidence of these recommendations is low as available metrics might not be
sufficient to detect application design, configuration, or execution choices.

Best practices have been followed.

Relevant information regarding application configuration.
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WarpX / OpenPMD

USE CASE

— METADATA
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» Application is write operation intensive (60.83% writes vs. 39.17% reads)

— METADATA
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» Application

is write operation intensive (90.85% writes vs. 9.15% reads)

YyYYVYYY

o 275840 (64.38%) small write requests are to "8a parallel 3Db 0000001.h5"
Application mostly uses consecutive (97.67%) and sequential (2.16%) read requests
Application mostly uses consecutive (97.85%) and sequential (1.17%) write requests
Application uses MPI-I0 and write data using 7680 (92.50%) collective operations
Application could benefit from non-blocking (asynchronous) reads

Application could benefit from non blocking (asynchronous) writes

» Application is write size intensive (64 15% write vs 35 85% read) » Application is write size intensive (91 14% write vs 8 86% read)
» Application issues a high number (100.00%) of misaligned file requests » Application might have redundant read traffic (more data read than the highest offset)
— OPERATIONS — OPERATIONS
» Application issues a high number (275840) of small read requests (i.e., < 1MB) which » Application is issuing a high number (565) of random read operations (35.25%)
represents 100.00% of all read/write requests » Application mostly uses consecutive (88.56%) and sequential (7.02%) write requests
© 275840 (100.00%) small read requests are to "8a parallel 3Db 0000001.h5" » Application uses MPI-IO and write data using 8448 (100.00%) collective operations
» Application issues a high number (427386) of small write requests (i.e., < 1MB) which » Application could benefit from non-blocking (asynchronous) reads
represents 99.75% of all read/write requests » Application could benefit from non-blocking (asynchronous) writes
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WarpX / OpenPMD

USE CASE
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» Application issues a high number (100.00%) of misaligned file requests

© 275840 (100.00%) small read requests are to "8a parallel 3Db 0000001.h5"

o 275840 (64.38%) small write requests are to "8a parallel 3Db 0000001.h5"
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AMReX

USE CASE

« Uses highly parallel Adaptive Mesh Refinement (AMR) algorithms

— Solve partial differential equations

—  Block-structured meshes
* Astrophysics, atmospheric modeling, combustion, cosmology, and particle accelerators
« Experimental setup:

— 512 ranks (32 nodes) in Cori

— 1024 domain size

— 1 level, 6 components, 2 particles per cell

— 10 output plot files
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AMReX

USE CASE

2.1%
speedup

from 211 to 100 seconds
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© write © read
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» Application is write operation intensive (99.98% writes vs. 0.02% reads)
> Application is write size intensive (100.00% write vs. 0.00% read)

OPERATIONS

» Application issues a high number (491640) of small write requests (i.e., < 1MB) which

represents 99.99% of all read/write requests

98328 (20.00%) small write requests are to "plt@00O1.h5"
= 98328 (20.00%) small write requests are to "plt00002.h5"
= 98328 (20.00%) small write requests are to "plt00005.h5"
< 98328 (20.00%) small write requests are to "plt@0009.h5"
< 98328 (20.00%) small write requests are to "plt@000O.h5"
< 98328 (20.00%) small write requests are to "plt00004.h5"
< 98328 (20.00%) small write requests are to "plt@0003.h5"
= 98328 (20.00%) small write requests are to "plt00006.h5"
= 98328 (20.00%) small write requests are to "plt00007.h5"
< 98328 (20.00%) small write requests are to "plt@0008.h5"
< Recommendations:

< Consider buffering write operations into larger more contiguous ones

- Since the application already uses MPI-IO, consider using collective I/0 calls (e.g.

MPI_File_write_all() or MPI_File_write_at_all()) to aggregate requests into larger ones
» Application mostly uses consecutive ( %) and sequential (32.79 read requests
» Application most onsecutive (0.01%) and sequential (99.98%) write requests

use

» Application issues a high number (491640) of small write requests to a shared file (i.e.,

1MB) which represents 99.99% of all shared file write requests

< 49164 (10.00%) small writes requests are to "plt@e001.h5"

- 49164 (10.00%) small writes requests are to "plt00002.h5"

= 49164 (10.00%) small writes requests are to "plt@@005.h5"

< 49164 (10.00%) small writes requests are to "plt00009.h5"

< 49164 (10.00%) small writes requests are to "plt00000.h5"

< 49164 (10.00%) small writes requests are to "plt0@0004.h5"

< 49164 (10.00%) small writes requests are to "plt@00©3.h5"

- 49164 (10.00%) small writes requests are to "plt00006.h5"

= 49164 (10.00%) small writes requests are to "plt@@007.h5"

< 49164 (10.00%) small writes requests are to "plt00068.h5"

< Recommendations:

o Consider coalescing write requests into larger more contiguous ones using MPI-IO
collective operations
» Application uses MPI-IO and write data using 15360 (99.81%) collective operations
» Application could benefit from non-blocking (asynchronous) reads

< Recommendations:

< Since you use HDF5, consider using the ASYNC I/0 VOL connector
(https://github.com/hpc-io/vol-async)

< Since you use MPI-IO, consider non-blocking/asynchronous I/0 operations
» Application could benefit from non-blocking (asynchronous) writes

< Recommendations:

< Since you use HDF5, consider using the ASYNC I/0 VOL connector
(https://github.com/hpc-io/vol-async)

< Since you use MPI-IO, consider non-blocking/asynchronous I/0 operations
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Coming Soon!

* Improved recommendations
— Issues and suggestions pointing to the source-code location
— Enhanced code snippets for tuning

- API to handle other sources of metrics
— Full support for Recorder 2.0 (github.com/uiuc-hpc/Recorder)
— File system metrics

«  Support for interdependent and complex triggers
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Bringing Science Solutions to the World

Drishfi and HDF5:

What is actually happening in my application?

e Pinpointing root causes of I/O inefficiencies requires:
o Detailed metric analysis
o Understanding of the HPC 1/O stack

e Drishti is an interactive 1/0O analysis framework

o Seeks to close the gap between trace collection, analysis, and tuning
o Detects common root causes of I/O performance inefficiencies

o Provides actionable recommendations to the users
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