)

rrrrrr

U.S. DEPARTMENT OF

ENERGY

Bringing Science Solutions to the World Office of Science

Drishti and HDF5:

What is actually happening in my application?

Jean Luca Bez — Scientific Data Division, LBNL

Suren Byna (OSU and LBNL) and Hammad Ather (Univ. of Oregon and LBNL)

HDF5 User Group (HUG) Meeting 2023

Complex |/O stack!

« Using the HPC 1/O stack efficiently is a tricky problem
* Interplay of factors can affect I/O performance

« Various optimizations techniques available

* Plethora of tunable parameters

- Each layer brings a new set of parameters

Drishti and HDF5 | Jean Luca Bez | HUG’23

HDF5, NetCDF, ADIOS

POSIX, STDIO

Lustre, GPFS, PVFS,
OrangeFS, BeeGFS, PanFS

HDD, SSD, RAID

Applications

A A A
A 4

High-Level I/O Libraries

Parallel I/O Middleware

Low-level I/O Libraries

/O Forwarding Layer

Parallel File System

Storage Hardware

MPI-I0

IBM ciod, IOFSL
Cray DVS, Cray Datawarp

Metrics to the rescue?

- Darshan is a popular tool to collect I/O profiling
- Extended tracing mode (DXT) for a fine grain view

* Recorder and TAU are other I/O profiling tools

« How to optimize the I/O of my application?

Drishti and HDF5 | Jean Luca Bez | HUG’23

What is the problem?

* There is still a gap between profiling and tuning

* How to convert I/O metrics to meaningful information?
— Visualize characteristics, behavior, and bottlenecks
— Detect root causes of I/O bottlenecks
— Map 1I/O bottlenecks into actionable items

— Guide end-user to tune I/O performance

Drishti and HDF5 | Jean Luca Bez | HUG’23

PROFILING

TUNED APPLICATION

Drishti

- Sanskrit word meaning “point of focus”
— Interactive web based analysis framework
— Pinpoint root causes of I/O performance problems
— Detects typical I/0O performance pitfalls
— Provide a set of actionable recommendations

« Working to support multiple sources of I/O metrics

Drishti and HDF5 | Jean Luca Bez | HUG’23

PROFILING

U

Ik

TUNED APPLICATION

/O Analysis Operation
Behavior and I/0O Phases
Darshan / DXT Transfer Size
pyDarshan v
Interactive Plots >

HPC Appllpatlon Spatiality .H'II'ML
I/0 Metrics Plotly Drishti Output
A
Recorder
Traces I/O Phases
Insights
Recommendations Storage System

Drishti and HDF5 | Jean Luca Bez | HUG’23

Interactive Analysi

DARSHAN:
sample/jlbez_IO_test5.Linux_id1797024_12-1-78642-14680324743816948210_159.darshan

/gpfs/alpine/csc300/scratch/jlbez/vpic-brtnfld/results/vpic-hdf5-1662725/field_hdf5/T.1/fields_1.h5

OPERATIO! TRANSFE SPATIALITY

/gpfs/alpine/csc300/scratch/jlbez/vpic-brtnfld/results/vpic-hdf5-1662725/hydro_hdf5/T.1/hydro_proton_1.h5

OPERATIO! TRANSFER SPATIALITY

/gpts/alpine/csc300/scratch/jlbez/vpic-brtnfld/results/vpic-hdf5-1662725/hydro_hd£5/T.1/hydro_electron_1.hs

OPERATION TRANSFER SPATIALITY

/gpEs/alpine/csc300/scratch/jlbez/vpic-brtnfld/results/vpic-hd£5-1662725/particle_hdf5/T.1/proton_1.hs

OPERATIO! TRANSFE SPATIALITY

/gpfs/alpine/csc300/scratch/jlbez/vpic-brtnfld/results/vpic-hdf5-1662725/particle_hdf5/T.1/electron_1.h5

Spatial Locality

Request Size * 0-100 ¢ 101-1K ¢ 1K-10K ¢ 10K-100K - 10M-100M

1000

800

Rank

UM

1000

800 |

Rank
pesy

Drishti and HDF5 | Jean Luca Bez | HUG’23

Operation

operation ° Write * read

1000

Rank

Olld

Rank

XISOd

Runtime (Seconds)

1/0 Phases

Threshold = 0.00347s, Total I/O Phases = 6 * write

Threshold = 0.0075s, Total I/O Phases = 29

1 15 2 25 3 35 4 45
Runtime (Seconds)

read&write * read

olldin

XIsOd

OST#

OoSsT#

Transfer Size

Request Size * 0-100 * 101-1K * 1K-10K - 10K-100K

100K-1M * 4M-10M ¢ 10M-100M

* write © read

238

209
110
90
93

151
213

238

209
110
90
93

151
213

2 25 3 35
Runtime (Seconds)

OlldA

XISOd

OlldW

XISOd

Drishti Triggers

Level Description

HIGH High probability of harming I/0 performance.

Detected issues that could cause a significant negative impact on the /0 performance.
The confidence of these recommendations is low as available metrics might not be
sufficient to detect application design, configuration, or execution choices.

Best practices have been followed.

Relevant information regarding application configuration.

Drishti and HDF5 | Jean Luca Bez | HUG’23

WarpX / OpenPMD

USE CASE

— METADATA

10 20 30
Request size (MB) IS

1000
750
500

OlldiN

250

1000

Rank #

750
500

XISOd

250

60
Time (seconds)

» Application is write operation intensive (60.83% writes vs. 39.17% reads)

— METADATA

10 20 30
Request size (MB) IS

1000
750
500

OlldiN

250

Rank #

1000
750
500

XISOd

250

0 20 40 60
Time (seconds)

» Application

is write operation intensive (90.85% writes vs. 9.15% reads)

YyYYVYYY

o 275840 (64.38%) small write requests are to "8a parallel 3Db 0000001.h5"
Application mostly uses consecutive (97.67%) and sequential (2.16%) read requests
Application mostly uses consecutive (97.85%) and sequential (1.17%) write requests
Application uses MPI-I0 and write data using 7680 (92.50%) collective operations
Application could benefit from non-blocking (asynchronous) reads

Application could benefit from non blocking (asynchronous) writes

» Application is write size intensive (64 15% write vs 35 85% read) » Application is write size intensive (91 14% write vs 8 86% read)
» Application issues a high number (100.00%) of misaligned file requests » Application might have redundant read traffic (more data read than the highest offset)
— OPERATIONS — OPERATIONS
» Application issues a high number (275840) of small read requests (i.e., < 1MB) which » Application is issuing a high number (565) of random read operations (35.25%)
represents 100.00% of all read/write requests » Application mostly uses consecutive (88.56%) and sequential (7.02%) write requests
© 275840 (100.00%) small read requests are to "8a parallel 3Db 0000001.h5" » Application uses MPI-IO and write data using 8448 (100.00%) collective operations
» Application issues a high number (427386) of small write requests (i.e., < 1MB) which » Application could benefit from non-blocking (asynchronous) reads
represents 99.75% of all read/write requests » Application could benefit from non-blocking (asynchronous) writes

Drishti and HDF5 | Jean Luca Bez | HUG’23

WarpX / OpenPMD

USE CASE

10 20 30
Request size (MB) IS

1000
750
500
250

1000

Rank #

750
500
250

o
Lt

0 20 40 60
Time (seconds)

» Application issues a high number (100.00%) of misaligned file requests

© 275840 (100.00%) small read requests are to "8a parallel 3Db 0000001.h5"

o 275840 (64.38%) small write requests are to "8a parallel 3Db 0000001.h5"

Drishti and HDF5 | Jean Luca Bez | HUG’23

OlldiN

XISOd

1000
750
500
250

1000

Rank #

750
500
250

Request size (MB) IS

10

20

30

0 20
Time (seconds)

40

60

» Application is issuing a high number (565) of random read operations (35.25%)

OlldiN

XISOd

10

AMReX

USE CASE

« Uses highly parallel Adaptive Mesh Refinement (AMR) algorithms

— Solve partial differential equations

— Block-structured meshes
* Astrophysics, atmospheric modeling, combustion, cosmology, and particle accelerators
« Experimental setup:

— 512 ranks (32 nodes) in Cori

— 1024 domain size

— 1 level, 6 components, 2 particles per cell

— 10 output plot files

Drishti and HDF5 | Jean Luca Bez | HUG’23

11

AMReX

USE CASE

2.1%
speedup

from 211 to 100 seconds

Drishti and HDF5 | Jean Luca Bez | HUG’23

© write © read

500

400

300

Rank

200

100

500

400

300

Rank

200

100

Runtime (Seconds)

METADATA

OlldW

XIsOd

200

» Application is write operation intensive (99.98% writes vs. 0.02% reads)
> Application is write size intensive (100.00% write vs. 0.00% read)

OPERATIONS

» Application issues a high number (491640) of small write requests (i.e., < 1MB) which

represents 99.99% of all read/write requests

98328 (20.00%) small write requests are to "plt@00O1.h5"
= 98328 (20.00%) small write requests are to "plt00002.h5"
= 98328 (20.00%) small write requests are to "plt00005.h5"
< 98328 (20.00%) small write requests are to "plt@0009.h5"
< 98328 (20.00%) small write requests are to "plt@000O.h5"
< 98328 (20.00%) small write requests are to "plt00004.h5"
< 98328 (20.00%) small write requests are to "plt@0003.h5"
= 98328 (20.00%) small write requests are to "plt00006.h5"
= 98328 (20.00%) small write requests are to "plt00007.h5"
< 98328 (20.00%) small write requests are to "plt@0008.h5"
< Recommendations:

< Consider buffering write operations into larger more contiguous ones

- Since the application already uses MPI-IO, consider using collective I/0 calls (e.g.

MPI_File_write_all() or MPI_File_write_at_all()) to aggregate requests into larger ones
» Application mostly uses consecutive (%) and sequential (32.79 read requests
» Application most onsecutive (0.01%) and sequential (99.98%) write requests

use

» Application issues a high number (491640) of small write requests to a shared file (i.e.,

1MB) which represents 99.99% of all shared file write requests

< 49164 (10.00%) small writes requests are to "plt@e001.h5"

- 49164 (10.00%) small writes requests are to "plt00002.h5"

= 49164 (10.00%) small writes requests are to "plt@@005.h5"

< 49164 (10.00%) small writes requests are to "plt00009.h5"

< 49164 (10.00%) small writes requests are to "plt00000.h5"

< 49164 (10.00%) small writes requests are to "plt0@0004.h5"

< 49164 (10.00%) small writes requests are to "plt@00©3.h5"

- 49164 (10.00%) small writes requests are to "plt00006.h5"

= 49164 (10.00%) small writes requests are to "plt@@007.h5"

< 49164 (10.00%) small writes requests are to "plt00068.h5"

< Recommendations:

o Consider coalescing write requests into larger more contiguous ones using MPI-IO
collective operations
» Application uses MPI-IO and write data using 15360 (99.81%) collective operations
» Application could benefit from non-blocking (asynchronous) reads

< Recommendations:

< Since you use HDF5, consider using the ASYNC I/0 VOL connector
(https://github.com/hpc-io/vol-async)

< Since you use MPI-IO, consider non-blocking/asynchronous I/0 operations
» Application could benefit from non-blocking (asynchronous) writes

< Recommendations:

< Since you use HDF5, consider using the ASYNC I/0 VOL connector
(https://github.com/hpc-io/vol-async)

< Since you use MPI-IO, consider non-blocking/asynchronous I/0 operations

* write © read

Rank

500
400
300
200
100

[¢]

500

400

300

Rank

200

100

0 50 100 150 200
Runtime (Seconds)

METADATA

OlldW

XISOd

»Application is write operation intensive (99.61% writes vs. 0.39% reads)
B Application is write size intensive (100.00% write vs. 0.00% read)

OPERATIONS

»Application y
pApplication mostly u onsecutive
»Application uses MPI-I0 and write da

consecutive sequential
o sequentia

(99.81%) coll

read requests

rite u

12

Coming Soon!

* Improved recommendations
— Issues and suggestions pointing to the source-code location
— Enhanced code snippets for tuning

- API to handle other sources of metrics
— Full support for Recorder 2.0 (github.com/uiuc-hpc/Recorder)
— File system metrics

« Support for interdependent and complex triggers

Drishti and HDF5 | Jean Luca Bez | HUG’23

13

)

rrrrrr

Bringing Science Solutions to the World

Drishfi and HDF5:

What is actually happening in my application?

e Pinpointing root causes of I/O inefficiencies requires:
o Detailed metric analysis
o Understanding of the HPC 1/O stack

e Drishti is an interactive 1/0O analysis framework

o Seeks to close the gap between trace collection, analysis, and tuning
o Detects common root causes of I/O performance inefficiencies

o Provides actionable recommendations to the users

.—Q\
)
E\(\g ']|:) 0 github.com/hpc-io/drishti ﬁ jlbez@lbl.gov sbyna@lbl.gov

U.S. DEPARTMENT OF

ENERGY

Office of Science

14

