
Copyright 2022, The HDF Group

August 16, 2023

Recent Additions to HDF5

Neil Fortner, The HDF Group

Multi Dataset I/O

3Multi Dataset I/O
▪Many applications perform I/O on multiple datasets
▪Legacy API requires app to issue these I/O calls one dataset at a time
▪New APIs available since 1.14.0 allow I/O to multiplie datasets in a
single API call
▪HDF5 library can, in many cases, aggregate all this information and
pass it to the virtual file driver in a single callback
▪Potential performance improvement

August 16, 2023

4Example: MPI I/O
▪Perform I/O on two datasets, each with 4 chunks
▪Select the first 3 columns of each chunk

August 16, 2023

5Independent I/O Example
▪Chunked dataset with partial
I/O (red squares):
⁃ One MPI_File_read/write_at() call

per row, so 40 calls total

August 16, 2023

6Independent I/O Example
▪Chunked dataset with partial
I/O (red squares):
⁃ One MPI_File_read/write_at() call

per row, so 40 calls total

August 16, 2023

7Independent I/O Example
▪Chunked dataset with partial
I/O (red squares):
⁃ One MPI_File_read/write_at() call

per row, so 40 calls total

August 16, 2023

8Independent I/O Example
▪Chunked dataset with partial
I/O (red squares):
⁃ One MPI_File_read/write_at() call

per row, so 40 calls total

e t c . . .

August 16, 2023

9Multi-Chunk I/O Example
▪Chunked dataset with partial
I/O (red squares):
⁃ One

MPI_File_read/write_at(_all)() call
per chunk, so 8 calls total

August 16, 2023

10Multi-Chunk I/O Example
▪Chunked dataset with partial
I/O (red squares):
⁃ One

MPI_File_read/write_at(_all)() call
per chunk, so 8 calls total

August 16, 2023

11Multi-Chunk I/O Example
▪Chunked dataset with partial
I/O (red squares):
⁃ One

MPI_File_read/write_at(_all)() call
per chunk, so 8 calls total

August 16, 2023

12Multi-Chunk I/O Example
▪Chunked dataset with partial
I/O (red squares):
⁃ One

MPI_File_read/write_at(_all)() call
per chunk, so 8 calls total e t c . . .

August 16, 2023

13Link-Chunk I/O Example
▪Chunked dataset with partial
I/O (red squares):
⁃ One

MPI_File_read/write_at(_all)() call
per dataset, so 2 calls total

August 16, 2023

14Link-Chunk I/O Example
▪Chunked dataset with partial
I/O (red squares):
⁃ One

MPI_File_read/write_at(_all)() call
per dataset, so 2 calls total

August 16, 2023

15Link-Chunk I/O Example
▪Chunked dataset with partial
I/O (red squares):
⁃ One

MPI_File_read/write_at(_all)() call
per dataset, so 2 calls total

August 16, 2023

16Multi Dataset I/O Example
▪Chunked dataset with partial
I/O (red squares):
⁃ One

MPI_File_read/write_at(_all)() call
per I/O, so 1 call total

August 16, 2023

17Multi Dataset I/O Example
▪Chunked dataset with partial
I/O (red squares):
⁃ One

MPI_File_read/write_at(_all)() call
per I/O, so 1 call total

August 16, 2023

18Multi Dataset I/O
▪API:
⁃ herr_t H5Dread_multi(hsize_t count, hid_t dataset_id[],
hid_t mem_type_id[], hid_t mem_space_id[], hid_t
file_space_id[], hid_t xfer_plist_id, void * buf[])

⁃ herr_t H5Dwrite_multi(hsize_t count, hid_t dataset_id[],
hid_t mem_type_id[], hid_t mem_space_id[], hid_t
file_space_id[], hid_t xfer_plist_id, const void * buf[])

August 16, 2023

19Benchmark Results
▪Standalone Benchmark
⁃ Constant number of ranks, vary number of datasets
⁃ Compare looped H5Dread/write with H5Dread/write_multi
⁃ 7 GiB per dataset

August 16, 2023

20Benchmark Results
▪Standalone Benchmark
⁃ Constant number of ranks, vary number of datasets
⁃ Compare looped H5Dread/write with H5Dread/write_multi
⁃ 7 GiB per dataset

August 16, 2023

21Benchmark Results
▪Quick CGNS Benchmark
⁃ 16 H5Dread/write() calls -> 6 H5Dread/write_multi() calls (don’t expect huge

improvement)
⁃ On Summit, with problem size held constant:
‣ 2688 ranks, ~10% improvement
‣ 10752 ranks, ~6% improvement

August 16, 2023

22Supported Use Cases
▪All ranks must pass the same list of datasets (in collective mode)
▪All datasets must be in the same file
▪Each dataset may only be present once in the list
▪Selection I/O fully supported
▪For simultaneous multi dataset I/O:
⁃ Must be in collective mode – H5Pset_dxpl_mpio
⁃ None of the datasets can have data filters/compression (ongoing work!)
⁃ All datasets must have contiguous or chunked layout
⁃ Otherwise, library will process one dataset at a time

August 16, 2023

23Questions?
▪Acknowledgments

This research was supported by the Exascale Computing Project (17-
SC-20-SC), a collaborative effort of the U.S. Department of Energy
Office of Science and the National Nuclear Security Administration.

August 16, 2023

Selection and Vector I/O

25Selection and Vector I/O
▪Before 1.14.1, all virtual file drivers (VFDs) except the built in MPIO
driver would only accept a single offset/length pair per operation
−Effectively like the “independent” example shown for multi dataset
−For the MPIO VFD, the library detects if it is in use, and if so,
constructs MPI datatypes for the I/O and passes it to the VFD
through undocumented DXPL properties

▪We wanted to allow other VFDs, including external VFDs, to handle
non-contiguous I/O in an intelligent fashion
▪We have added selection and vector I/O callbacks to the VFD struct in
1.14.1

August 16, 2023

26Vector I/O
▪Vector I/O refers to passing a list of offsets and lengths to the VFD
layer instead of a single pair
▪Simple, but potentially costly in terms of memory usage, even if the
offsets/lengths are regularly spaced

▪ herr_t (*read_vector)(H5FD_t *file, hid_t dxpl, uint32_t count, H5FD_mem_t
types[], haddr_t addrs[], size_t sizes[], void *bufs[]);

 herr_t (*write_vector)(H5FD_t *file, hid_t dxpl, uint32_t count, H5FD_mem_t
types[], haddr_t addrs[], size_t sizes[], const void *bufs[]);

August 16, 2023

27Selection I/O
▪In selection I/O we instead pass a list of offsets and HDF5 dataspace
selections
▪Allows more compact representation of regular selections
▪For non-regular selections, query currently effectively reduces to
offset/length pairs (new API being considered to improve this)

▪ herr_t (*read_selection)(H5FD_t *file, H5FD_mem_t type, hid_t dxpl_id, size_t
count, hid_t mem_spaces[], hid_t file_spaces[], haddr_t offsets[], size_t
element_sizes[], void *bufs[] /*out*/);

 herr_t (*write_selection)(H5FD_t *file, H5FD_mem_t type, hid_t dxpl_id, size_t
count, hid_t mem_spaces[], hid_t file_spaces[], haddr_t offsets[], size_t
element_sizes[], const void *bufs[] /*in*/);

August 16, 2023

28Supported Cases
▪Supports multi dataset
▪Support type conversion (see later slide)
▪Conditions
−Must be supported by VFD
●MPIO VFD supports vector I/O since 1.14.1, selection I/O since
1.14.2

−Must be chunked or contiguous dataset
−Must not use data filters/compression (except for parallel I/O)
−Must not use the chunk cache, sieve buffer, or page buffering

▪Turn selection/vector I/O on and off with:
herr_t H5Pset_selection_io(hid_t plist_id, H5D_selection_io_mode_t
selection_io_mode);

August 16, 2023

29Type Conversion
▪Type conversion is supported with selection/vector I/O
−This allows type conversion with parallel collective I/O, which was
not possible before!

▪However, the conversion buffer (and background buffer, if applicable)
must be large enough to hold all elements involved in I/O, otherwise
selection I/O is disabled
▪To mitigate this, we have implemented in-place type conversion, where
the application buffer is also used as the type conversion buffer,
eliminating the need to allocate another large buffer.

August 16, 2023

30In-Place Type Conversion
▪For in-place type conversion to work, the memory type must not be
smaller than the file type
▪In addition, the memory selection corresponding to each chunk or
contiguous dataset in the I/O must be contiguous
▪For write operations, in-place type conversion will destroy data in the
write buffer, so it is off by default. To allow in-place type conversion
use:
herr_t H5Pset_modify_write_buf(hid_t plist_id, hbool_t modify_write_buf);

▪In 1.14.2 this has been extended to also work with legacy (scalar) I/O
−Allows a large I/O with type conversion in a single VFD call without
needing a large type conversion buffer. Previously would always
break into smaller operations.

August 16, 2023

31Questions?
▪Acknowledgments

This research was supported by the Exascale Computing Project (17-
SC-20-SC), a collaborative effort of the U.S. Department of Energy
Office of Science and the National Nuclear Security Administration.

August 16, 2023

Subfiling VFD

33

What is it?

• An MPI-based parallel file driver that allows an HDF5 application to
distribute an HDF5 file across a collection of subfiles in equal-sized data
segment stripes
• Data stripe size is the amount of data (in bytes) that can be written to a subfile before
data is placed in the next subfile in round-robin fashion

• Defaults to 1 subfile per machine node with 32MiB data stripes

• Try to find a middle ground between single shared file and file-per-process
approaches to parallel I/O
• Minimize the locking issues of single shared file approach
• Avoid some complexity and reduce total number of files compared to file-per-process
approach

• Designed to be flexible and configurable for different machines

34

What is it? (continued)

• Uses a system of "I/O concentrators" - subset of available MPI ranks which
control subfiles and operate I/O worker thread pools
• N-to-1 mapping from subfiles -> I/O concentrator ranks
• Subfiles are assigned round-robin across the available I/O concentrator ranks, as
determined by the chosen I/O concentrator selection method

• I/O from non-I/O-concentrator MPI ranks is forwarded to the appropriate I/O concentrator
based on offset in the logical HDF5 file

• Outputs several files per logical HDF5 file
• HDF5 stub file
• Subfiling VFD configuration file
• Subfiles

35

Current Architecture

• Subfiling VFD stacked on top of I/O Concentrator VFD on each MPI rank
• Subfiling VFD manages subfiling information (data stripe size, subfile count, HDF5 stub
file, etc.) and breaks down I/O requests into offset/length vectors based on data stripe
size and file offset

• I/O Concentrator VFD receives I/O vectors and queues I/O calls to appropriate I/O
concentrator

• Subset of MPI ranks selected as I/O concentrators
• Each controls one or more subfiles
• Receive I/O calls from I/O concentrator VFDs, translate to subfile-local file offsets and
relay I/O call to appropriate subfile

36

Current Architecture

I/O Concentrator 0

POSIX I/O
(pread/pwrite)

Node-local storage /
Parallel Filesystem /

etc.

I/O Concentrator 1

POSIX I/O
(pread/pwrite)

Node-local storage /
Parallel Filesystem /

etc.

I/O Concentrator M

POSIX I/O
(pread/pwrite)

Node-local storage /
Parallel Filesystem /

etc.

Rank 0

I/O Concentrator
VFD

HDF5 Library

VFD Layer

Subfiling VFD

…
…

…

…
…

…

…

I/O Concentrator
VFD

HDF5 Library

VFD Layer

Subfiling VFD

Rank 1

I/O Concentrator
VFD

HDF5 Library

VFD Layer

Subfiling VFD

Rank 2

I/O Concentrator
VFD

HDF5 Library

VFD Layer

Subfiling VFD

Rank N - 1

I/O Concentrator
VFD

HDF5 Library

VFD Layer

Subfiling VFD

Rank N

37

New API Calls

herr_t
H5Pset_fapl_subfiling(hid_t fapl_id, const H5FD_subfiling_config_t *vfd_config);

Modifies the given File Access Property List to use the Subfiling VFD
and configures the VFD according to the parameters set in the specified
subfiling configuration structure. The subfiling configuration structure
may be NULL, in which case default values are used.

herr_t
H5Pget_fapl_subfiling(hid_t fapl_id, H5FD_subfiling_config_t *config_out);

Returns the subfiling parameters that were set on the given File Access
Property List, or default values if no subfiling parameters were set

38

Performance Results

• CGNS = Computational Fluid Dynamics (CFD) General Notation System
• Standardize CFD I/O.
• Subfiling version in the subfiling branch of the CGNS library.
• Benchmark_hdf5.c writes and reads: mesh coordinates, element connectivity and solution

data.
• Summit (GPFS), using a mesh of 130 million (for 21k ranks), 6-node pentahedral elements.

• The number of elements is halved as the ranks are decreased.

Number of Ranks HDF5 File Size
21504 53 GiB
10752 27 GiB
5376 14 GiB
2688 6.6 GiB

https://github.com/CGNS/CGNS/tree/subfiling

39

Performance Results

40

Performance Results -- Summit

• IOR, modified version for subfiling
Number of Ranks File Size
1344 42GiB
2688 84 GiB
5376 168 GiB
10752 336 GiB

41

Availability and Requirements

• Initial version released in HDF5 1.13.2 release
• Further development work has been merged to develop branch for HDF5 1.13.3 and

1.14.0 releases

• HDF5 must be built with parallel support enabled
• Must enable subfiling when building HDF5. It’s not enabled by default

• C11 capable compiler support is required

• Requires MPI_Init_thread to be called by HDF5 application and requires
MPI_THREAD_MULTIPLE level of threading support by MPI
implementation

42Questions?
▪Acknowledgments

This research was supported by the Exascale Computing Project (17-
SC-20-SC), a collaborative effort of the U.S. Department of Energy
Office of Science and the National Nuclear Security Administration.

August 16, 2023

