
HDF5 Cache VOL: Efficient parallel I/O through
caching data on node-local storage

Huihuo Zheng1, Venkatram Vishwanath1, Quincey Koziol2, Houjun
Tang2, John Ravi2, John Mainzer3, and Suren Byna2

1Argonne National Laboratory, 2Berkeley National Laboratory, 3The HDF Group
huihuo.zheng@anl.gov

Nov 16th, 2022

HDF5 Cache VOL: Efficient and Scalable Parallel I/O through Caching
Data on Node-local Storage, Huihuo Zheng, et al, CCGrid 2022

mailto:huihuo.zheng@anl.gov

Transparently integrating node-local storage
into parallel I/O workflows

Node-local storage
• Local & private; no contention or job interference

à more stable and scalable IO;
• Faster (larger aggregate bandwidth).

Theta (w) – Lustre: 650 GB/s, SSD: 3TB/s
Summit (w) – GPFS: 2.5 TB/s, NVMe: 9.7 TB/s

Node-local storage (SSD, NVMe, etc)
Remote storage

Typical HPC storage hierarchy

Polaris @ ALCF: NVMe (7.68 TB / node)
Summit @ OLCF: GPFS + NVMe (1.6 TB / node)
Fugaku @ RIKEN: Lustre + NVMe (1.6 TB / 16 nodes)
Frontier @ OLCF: Lustre + NVMe (37PB total)

https://github.com/hpc-io/vol-cache.git

Challenges
• No global namespace;
• Accessible only during job running;
• Limited system software support.

Cache VOL: using node-local storage as a cache

Using caching to improve data access
Caching in memory hierarchy

3May 17th , 2022

• Write: the data is copied from the user's buffer
into the page cache in DRAM. The actual writes
to disk are done later.

• Read: data is read directly from the page cache
in DRAM if it is cached there.

Page caching in I/O

~TB/s

~100GB/s

Parallel Write (H5Dwrite)

4

Partial overlap of compute with I/O

Parallel file system
Shared HDF5 file

Node-local storage

1. Data is synchronously copied from the
memory buffer to memory mapped files
on the node-local storage using POSIX I/O.

2. Move data from memory mapped
file to the parallel file system
asynchronously through Async VOL
stacked below the Cache VOL

3. Wait for all the tasks to finish in
H5Dclose() / H5Fclose()

Compute RAM->NLS Compute
I/O: NLS->PFS

Compute I/O (RAMàPFS) Computew/o caching

w/ caching

Details are hidden from the application developers.

https://github.com/hpc-io/vol-cache.git

Compute node RAM

Parallel Read (H5Dread)

5

Single shared HDF5 file

MPI_Win

1. Reading data
from parallel file
system

MPI_Put 2. Caching data
using MPI_Put

Parallel file system

Compute
node RAM

Create memory mapped files and attached
virtual memory pointer to an MPI window

Node-local
storage

Memory-mapped shared file system
• Each process exposes a portion of its storage to

other processes through MPI Window
• Other processes read from or write to this

shared storage space through MPI_Put, MPI_Get.

Compute I/O Compute

Compute I/O Computew/o Caching

w/ Caching

MPI_Get Reading data from
NLS using MPI_Put

First time reading the data Reading the data directly from node-local storage

https://github.com/hpc-io/vol-cache.git

Targeting workloads with repeatedly reading the
same dataset multiple times.

Easy to adopt in the applications

export HDF5_PLUGIN_PATH=$HDF5_VOL_DIR/lib
export HDF5_VOL_CONNECTOR="cache_ext
config=SSD.cfg;under_vol=518;under_info={under_vol=0;under_info={}}”
export LD_LIBRARY_PATH=$HDF5_PLUGIN_PATH:$LD_LIBRARY_PATH

3) Initializing MPI with MPI_Init_thread(…, MPI_THREAD_MULTIPLE…)

2) Enabling caching VOL
Opt. 1 Through global environment variables (HDF5_CACHE_RD / HDF5_CACHE_WR [yes|no])
Opt. 2 Through setting file access property: H5Pset_fapl_plist(’HDF5_CACHE_RD’, true)

1) Setting VOL connectors #contents of SSD.cfg
HDF5_CACHE_STORAGE_SIZE 137438953472
HDF5_CACHE_STORAGE_TYPE SSD
HDF5_CACHE_STORAGE_PATH /local/scratch/
HDF5_CACHE_STORAGE_SCOPE LOCAL
HDF5_CACHE_WRITE_BUFFER_SIZE 102457690
HDF5_CACHE_REPLACEMENT_POLICY LRU

https://github.com/hpc-io/vol-cache.git

4) In some cases, rearranging the function calls to allow the overlap of computation with data
migration (check our github repo for the examples and best practices)

Performance evaluation (VPIC-IO & CosmoFlow)

Observed VPIC-IO write rate on Theta and (Right)
Summit. The number of time steps is 20. The write rate
reported here is the average over the 20 timesteps. The
emulated time is 200 seconds per time step on Theta.
Each process writes check-points data (32MB x 8) to a
shared file at each timestep

https://github.com/hpc-io/vol-cache.git 7

Dataset (8TB): (524288, 128, 128, 128, 4)

Improvement of training throughput by caching data on
the node-local storage for CosmoFlow. The training were
done on 16 DGX nodes with 128 Nvidia A100 GPUs on
ThetaGPU. Each training step randomly read a minibatch
of samples from a shared HDF5 file

VPIC-IO CosmoFlow

Acknowledgment

• This work was supported by the U.S. Department of Energy, Office of
Science, Office of Advanced Scientific Computing Research, under
contract number DE-AC02-05CH11231 (Project: Exascale Computing
Project [ECP] - ExaHDF5 project).

• This research used resources of the Argonne Leadership Computing
Facility, which is a DOE Office of Science User Facility supported under
Contract DE-AC02- 06CH11357.

• This research used resources of the Oak Ridge Leadership Computing
Facility, which is a DOE Office of Science User Facility supported under
Contract DE-AC05-00OR22725.

https://github.com/hpc-io/vol-cache.git 8

