
Accelerating HPC Applications with
Asynchronous I/O

Houjun Tang
Lawrence Berkeley National Laboratory, USA

HDF5 Async VOL Connector

• HDF5 1.13+ with the new HDF5 asynchronous I/O APIs.
• Transparent background thread execution overlaps I/O with compute time.

2

Explicit Control with Async and EventSet APIs

• Async version of HDF5 APIs
• H5Fcreate_async(fname, …, es_id);
• H5Dwrite_async(dset, …, es_id);
• …

• Track and inspect multiple I/O operations with an EventSet ID
• H5EScreate();
• H5ESwait(es_id, timeout, &remaining, &op_failed);
• H5ESget_err_info(es_id, ...);
• H5ESclose(es_id);

3

Example Code from AMReX

4

https://github.com/AMReX-Codes/amrex/blob/development/Src/Extern/HDF5/AMReX_PlotFileUtilHDF5.cpp#L721

https://github.com/AMReX-Codes/amrex/blob/development/Src/Extern/HDF5/AMReX_PlotFileUtilHDF5.cpp

How to use Async VOL
Detailed description in https://hdf5-vol-async.readthedocs.io
• Installation

• Compile HDF5 (github develop branch or released version 1.13+), with thread-safety support
• Compile Argobots threading library
• Compile Async VOL connector

• “-DENABLE_WRITE_MEMCPY” flag to have async vol copy write buffer
• Set environment variables

• export LD_LIBRARY_PATH=$VOL_DIR/lib:$H5_DIR/lib:$ABT_DIR/lib:$LD_LIBRARY_PATH
• export HDF5_PLUGIN_PATH="$VOL_DIR/lib"
• export HDF5_VOL_CONNECTOR="async under_vol=0;under_info={}"
• (optional) export HDF5_ASYNC_EXE_FCLOSE=1
• (optional) export HDF5_ASYNC_MAX_MEM_MB=67108864

• Run the application (using the async and EventSet APIs)
• MPI must be initialized with MPI_THREAD_MULTIPLE

5https://github.com/hpc-io/vol-async

spack install hdf5-vol-async

https://hdf5-vol-async.readthedocs.io
https://github.com/hpc-io/vol-async

Speedup with AMReX Applications on Summit

6

NyX workload, single refinement level,
writes 385GB x 5 steps, emulated compute time.

Castro workload, 3 refinement levels,
writes 559GB x 5 steps, emulated compute time.

Best Practice & Lessons Learned

• Async is effective when I/O time is a significant portion of the total application
execution time, and there is enough compute time to overlap with.

• Some operations cannot be done asynchronously, avoid if possible.
• E.g. H5Dget_space need to perform sync I/O, use async debug log for identification.

• MPI_THREAD_MULTIPLE has overhead.
• Background thread interference.

• Minimal interference for GPU-accelerated applications.
• OpenMP applications should leave 1 core/thread for the async background thread.

• Memory allocation needs to be handled properly.
• Peak memory usage could be higher than sync mode, due to double buffering.
• Will switch to sync mode when not enough system memory is available.

7

Thank you!
Questions?

8

This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of the U.S. Department of
Energy’s Office of Science and National Nuclear Security Administration, responsible for delivering a capable exascale
ecosystem, including software, applications, and hardware technology, to support the nation’s exascale computing imperative.

