Towards Multi-Thread HDF5

John Mainzer john.mainzer@lifeboat.llc
Elena Pourmal elena.pourmal@lifeboat.llc
Luc Grosheintz-Laval luc.grosheintz-laval@epfl.ch
Matthias Wolf matthias.wolf@epfl.ch

SC22 HDF5 BOF
November 16, 2022
Outline

- Goals
- Concept and prerequisites
- Bypass VOL and current status
- Proof of Concept
Our Goals

• Design changes to HDF5 required for multi-threaded data access
 • No API changes (some extensions possible)
 • No interruptions to HDF5 library proper and current applications that use thread-safe HDF5

• Enable development of multi-threaded HDF5 VOL connectors and VFDs

• Design and prototype multi-threaded VOL connector to HDF5 storage

• Set path towards full multi-threaded HDF5 implementation
Concept

• Query HDF5 library for the location of raw data
• Execute raw data I/O in parallel in multiple threads

Prerequisites

• HDF5 must allow multiple threads to be simultaneously active in a VOL connector
• For minimal functionality H5E, H5I, H5P, H5CX, and H5VL packages MUST be multi-thread safe
• Other packages are desirable
HDF5 API

Multi-threaded VOL layer (H5VL package)

Multi-threaded bypass VOL connector

Get exclusive lock

TS special case*?

Yes

Get shared lock

No

Hits global lock

HDF5 native VOL connector

not thread-safe guarded by global lock

Query native VOL connector for location of data

Construct and issue I/O requests for thread-safe VFD layer

Multi-threaded VFD layer

Hits global lock

Bypasses global lock

HDF5 File

* Initial prototype version: I/O on a dataset with contiguous or chunked storage and numeric datatype; no data filtering
Bypass VOL connector

- Examine incoming API calls
- If not a special case, allow only a single thread and route to native VOL
- If special case, query HDF5 for raw data location and execute the specified I/O; multiple threads can run concurrently

Current status

- Design work for the required HDF5 modifications is in progress
- We will make design documents public
- Implementation starts late this year
- Blue Brain developers have implemented algorithm of bypass VOL connector
- And here are the results...😊
Digitally Reconstructed Neurons

Hardware:
- Intel Xeon Gold 6140
- 2x 18 cores
- 6 memory channels
- 100 Gb/s InfiniBand
- SpectreScale/GPFS:
 - 2x GS14KX
 - 8x EDR
 - HDD

Synthetic Data Presented:
- Datasets: 20'000
- Total size: 17 GB
- File Space Strategy: Page
- Page size: 64 kB

{
 "0000": {
 "points": np.empty((9610, 3), np.float32),
 "offsets": np.empty(21, np.uint64)
 },
 "0001": {
 "points": np.empty((14983, 3), np.float32),
 "offsets": np.empty(48, np.uint64)
 },
 ...
}
Direct OpenMP HDF5 Prototype

1. Sequentially, read shape/size and offset from beginning of the file for each dataset.
2. Concurrently, `std::fseek` & `std::fread` individual datasets.
Page-aware OpenMP HDF5 Prototype

1. Sequentially, read shape/size and offset from beginning of the file for each dataset.
2. Pre-allocate datasets.
4. Concurrently loop over pages.
Results HDF5 Prototype

Experimental Setup:
- 12 Threads
- 3 measurements
- checksums [1] for correctness

[1]: https://github.com/Cyan4973/xxHash

HDF5: Plain HDF5 with 512 MB page buffer, 75% reserved for raw data.

Direct / Page-Aware: The two variants of the prototype.
- **Left**: Read metadata using HDF5
- **Right**: Read metadata from JSON

Best result **achieves the effective single node bandwidth** of GPFS over InfiniBand.

experiment: 5057cbc
checksum: ad30e23c563b4c81

hdf5: 1.13.2
threads: 12
References

• RFC: Multi-thread HDF5

• Blue Brain Project @ EPFL
 https://www.epfl.ch/research/domains/bluebrain/
Acknowledgments

• Material on multi-thread HDF5 is based upon work supported by the U.S. Department of Energy, Office of Science under Award Number DE-SC0022506

• The HDF Group

• Quincey Koziol, Amazon