
September 28, 2022 RFC THG 2012-08-28.v8

Page 1 of 14

RFC: New HDF5 API Routines for HPC Applications
Read/Write Multiple Datasets in an HDF5 file

Peter Cao
Quincey Koziol
Jonathan Kim
Neil Fortner

The HDF5 library allows a data access operation to access one dataset at a time,
whether access is collective or independent. However, accessing multiple datasets will
require the user to issue an I/O call for each dataset. This RFC proposes new routines to
allow users to access multiple datasets with a single I/O call.
This RFC describes the new API routines, H5Dread_multi() and H5Dwrite_multi(),
which perform a single access operation to multiple datasets in the file. The new
routines can improve performance, especially when data accessed across several
datasets from all processes can be aggregated in the HDF5 or MPI-I/O library.
The RFC was initially released in 2012. This latest revision reflects a renewed effort to
officially release and support the feature in the HDF5 library as part of the ECP ExaIO
project1.

1 Introduction
Parallel HDF5 (PHDF5) supports both independent and collective dataset access. When collective I/O
is used, all processes that have opened the dataset may do collective data access by calling H5Dread()
or H5Dwrite() on the dataset with the transfer property set for collective access. Accessing datasets
collectively using the MPIO VFD can improve I/O performance [1] since MPI can aggregate data into
large contiguous accesses to disk instead of small non-contiguous ones.
However, the current HDF5 library does not support a single I/O call for accessing multiple datasets.
For example, if one accesses five datasets in a file, one will need at least five I/O calls for each dataset.
We plan to add two new functions to the HDF5 library: H5Dread_multi() and H5Dwrite_multi(). With
the proposed new read/write functions, users will make a single function call to read or write data to
multiple datasets in an HDF5 file. Note that the multiple datasets are located in the same HDF5 file for
the scope of this task. The new functions can be used for both independent and collective I/O access,
but this task’s primary purpose is to utilize the collective I/O case.

1 Part of this research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of the U.S.
Department of Energy’s Office of Science and National Nuclear Security Administration, responsible for delivering a
capable exascale ecosystem, including software, applications, and hardware technology, to support the nation’s exascale
computing imperative

May 23, 2022 RFC THG 2012-08-28.v8

Page 2 of 14

1.1 Purpose
The purpose of the work is to implement two new functions to the HDF5 library: H5Dread_multi() and
H5Dwrite_multi(), which will often give better I/O performance when collective I/O is used.

1.2 Scope
H5Dread_multi() will take information from multiple datasets and read data from a file for the datasets
requested. If collective I/O is used, a single I/O call is used for better performance. Overlapping data
selections are supported.
H5Dwrite_multi() will take information from multiple datasets and write data to a file for the datasets
requested. If collective I/O is used, a single I/O call is used for better performance. If data selections
from multiple ranks overlap, the behavior of the H5Dwrite_multi() is not defined. Therefore,
overlapping data selections should not be used.
Datasets requested in H5Dread_multi() and H5Dwrite_multi() must reside in the same file. The new
functions do not support datasets across files.
Once the feature is fully productized, the benchmarks mentioned in this report will be rerun, along with
other standard I/O kernels, to fully determine the performance of the feature. The final deliverables
will also include a reference manual entry for each function and regression tests.

2 Use Case
This section presents a few older (FLASH I/O and E3SM) and recent (CGNS) use cases. The primary
purpose of the use cases is to show how the new library functions can be used to improve I/O.

2.1 Improving FLASH I/O for an ANL project
FLASH code was designed to simulate thermonuclear flashes on a Cartesian, structured mesh. The
mesh consists of cells that contain physical quantities such as density, pressure and temperature (also
known as mesh variables). Each cell is assigned to a self-contained block. In the FLASH file layout, a
block is stored in an HDF5 file, and mesh variables are stored as 4D datasets in the file.
The time spent on file I/O in a FLASH simulation is a common bottleneck. Using collective I/O[1]
improves I/O performance for HPC applications like FLASH. Current parallel HDF5 performs
collective I/O on a single dataset and requires many I/O calls in FLASH simulations since many
variables are frequently accessed during each time step. Using the proposed collective I/O on multiple
datasets will reduce the number of I/O calls. In an experimental study, Rob Latham, Chris Daley, etc.[2]
have shown that the average time for writing a file is reduced by half when collective I/O on multiple
variables is used:

“The standard file layout approach (storing application data in multiple library objects), however,
offers a slight performance trade-off. Each function call represents a relatively expensive I/O
operation. All other factors aside, if the goal is to achieve the highest I/O performance a better
approach would describe the entire application I/O pattern and then execute a single call. If the
application places all mesh variables into a single I/O library object, as in the experimental file
layout approach, then a single I/O library call could be issued to service all application variables
instead of N separate calls. Experiments confirm that this approach does improve performance.”[2]

The following figure shows the I/O results for standard file layout (storing mesh variables in multiple
datasets) and the experimental file layout approach (placing all mesh variables into a single I/O library
object). The results show that the single I/O approach (the experimental file layout) reduces the time to
write checkpoint files by half.

May 23, 2022 RFC THG 2012-08-28.v8

Page 3 of 14

2.2 Investigating E3SM performance improvements for the Exascale Computing Project
The Energy Exascale Earth System Model (E3SM) is a large-scale Earth modeling code that
couples ocean, atmosphere, and ice models. As part of the Exascale Computing Project, the
performance of the existing multi-dataset I/O prototype in HDF5 was evaluated for two different
cases in E3SM, as well as in a synthetic I/O benchmark[3]. We briefly summarize these cases here;
for full results, see the reference.
Two cases were evaluated for the E3SM benchmark: the “F” and “G” cases. The F case involved
large numbers of datasets, contiguous smaller amounts of data per dataset. The G case involved
smaller numbers of datasets with large amounts of data per dataset. This means the F case is more
likely to benefit from multi-dataset I/O since more I/O operations can be combined, and it is not as
limited by raw bandwidth. We indeed see a significant performance improvement of
approximately 10x in the F case with only a minor improvement in the G case:

May 23, 2022 RFC THG 2012-08-28.v8

Page 4 of 14

The synthetic benchmark pushes this further by increasing the number of non-contiguous blocks in
the datasets, while having as many datasets as the E3SM F case and a total amount of data in
between the E3SM cases. This, similarly to the E3SM F case, shows substantial performance
improvement from multi-dataset I/O:

While a different system using GPFS showed even greater improvements:

2.3 Investigating CGNS performance improvements with multi datasets
For applications that typically deal with a vector of components of fields, the number of multiple
datasets for each vector field may be small. For example, a CGNS parallel benchmark uses multi-
datasets to write/read:

(a) x,y,z components of a 3D Vector (nodal coordinates)
(b) x,y,z components of another 3D Vector (momentum components)
(c) x,y components of a 2D Vector (General solution field components)

8 H5Dwrite and 8 H5Dread are simplified to 3 H5Dwrite_multi and 3 H5Dread_multi calls with multi
dataset. The improvements for writing and reading on Summit, with collective I/O, where the problem size
remains the same (strong scaling), were,

Number of ranks Percent Improvement
with multi dataset

2688 10%
10752 6%

https://github.com/CGNS/CGNS/blob/develop/src/ptests/benchmark_hdf5.c

May 23, 2022 RFC THG 2012-08-28.v8

Page 5 of 14

2.4 Stand-alone Benchmark
A benchmark program creates datasets which is a function of the number of MPI ranks, mpi_size. For
this study, the number of ranks was constant, and the number of datasets was increased. The total
dataset sizes are summarized in Table 1. Each MPI rank performed I/O on a column hyperslab
selection of the datasets.

Table 1 The total dataset sizes as the number of datasets increases.

Number of Datasets Total Dataset Size (GiB)

1 7

2 14

4 28

8 56

16 112

32 225

64 451

128 903

256 1806

The write performance was generally improved on both Polaris and Summit as the number of datasets
increased. It was observed that read performance for multi-dataset decreased, which will be further
investigated. Although multi-dataset showed improvement on Polaris for collective, neither method for
collective IO could beat the overall time when using independent I/O.

May 23, 2022 RFC THG 2012-08-28.v8

Page 6 of 14

3 Functional requirements
The two main purposes of the H5Dread/write_multi() functions are: better I/O performance and
convenient function calls for multiple datasets. In addition, the two new functions should meet the
following specific requirements other than the standard HDF5 API function requirements.

3.1 H5Dread_multi()
This function will read data from a file to memory buffers for multiple datasets. This function should
attain no less I/O performance than reading data from individual datasets.

3.2 H5Dwrite_multi()
This function will write data in memory to a file for multiple datasets. The selection of data regions to
be written cannot overlap. This function should attain no less I/O performance than writing data for
individual datasets.

4 Implementation design
The basic approach for multi-dataset collective I/O is similar to the POSIX lio_listio() call, which takes
a list of buffers, offsets and lengths to perform a series of read and write operations on a file in a single
call. The primary difference from the typical HDF5 API call is that the new routines add information
from multiple datasets to the I/O mapping list and construct larger MPI-derived datatypes for collective
I/O operations for read and write operations in a separate manner. Internally, the multi-dataset
implementation will be similar to the current implementation of collective chunk I/O on a single
dataset.

4.1 Top-level design
The following example chart shows the conceptual implementation approach for the new API
functions.

May 23, 2022 RFC THG 2012-08-28.v8

Page 7 of 14

Note that sorting the list by file addresses is necessary because MPI requires the file type to consist of
derived datatypes whose displacements are monotonically non-decreasing.

4.2 Code-level design

4.2.1 Implementation details

The current implementation achieves multi-dataset I/O by creating a new structure,
H5D_dset_io_info_t, which contains all the information necessary for I/O on a single dataset. This
struct is used in conjunction with the existing H5D_io_info_t struct, which now contains only
information applicable to all datasets in an I/O operation. H5VL__native_dataset_read() and
H5VL__native_dataset_write() then allocate an array of these structs and pass them to
H5D__read()/H5D__write(), which iterate over all the datasets in the operation, passing the
corresponding element of the array of H5D_dset_io_info_t structs to each dataset’s layout’s io_init
operation. The io_init operations operate mostly as before, except they place info in the
H5D_dset_io_info_t struct, and place info on I/O within a single chunk or contiguous dataset in an
H5D_piece_info_t struct. Here, “piece” is a term for a contiguous data block, i.e. a single chunk or
contiguous dataset.
After the io_init loop, a second pass is made over the datasets, making a new mdio_init layout callback
for each, in which each dataset adds its piece(s) to a global unsorted list of pieces. This list of pieces is
then passed to the dataset MPIO code, where it is sorted before being processed. This prevents the
overhead of building a sorted skip list of pieces in cases where it is not needed, such as independent
I/O or selection I/O. The algorithm for simultaneous multi-dataset I/O is contained in the

May 23, 2022 RFC THG 2012-08-28.v8

Page 8 of 14

H5D__all_piece_collective_io() function which has been adapted from the previous
H5D__link_chunk_collective_io() to be able to link pieces across all datasets. This function similarly
constructs MPI datatypes that correspond to the dataspace selections for each piece, then combines
these datatypes into an overall MPI datatype for the entire I/O operation.
The existing multi chunk MPIO pathway remains, and is used under the same circumstances as it was
before. Multi chunk I/O refers to prcoessing the I/O request one chunk at a time. Since there is no need
to handle multiple datasets at once if the operations cannot be combined at a low level, when using
multi chunk I/O, the library processes one dataset at a time. Compressed dataset I/O is currently also
processed one dataset at a time, though we may link compressed chunks across datasets in the future.

4.2.2 Selection I/O
Multi dataset I/O also includes full support for selection I/O. This is a new feature which allows the
library to pass dataspace selections to the file driver instead of making a file driver call for each
offset/length pair (or passing MPI datatypes through an undocumented side channel in the case of the
MPIO driver). This allows any VFD to benefit from full knowledge of a noncontiguous I/O request.
When performing selection I/O, the H5D__read/write() makes a layout read/write callback for each
dataset, which adds to a global list of offsets, dataspaces, and buffers without performing I/O, then
H5D__read/write() makes a single file driver selection I/O callback with these lists.

4.2.3 VOL
The VOL layer allows developers to re-implement HDF5 features by implementing custom callbacks
for HDF5 API calls that access the HDF5 file. Since the multi dataset API functions do this, we have
modified the VOL layer to handle multi dataset. We did this by adding the count parameter to the
dataset read and write callbacks, and making the other parameters except dxpl_id arrays. In this way,
the VOL callbacks are essentially always multi-dataset, with normal single dataset calls simply passing
1 for the count. This means that VOL developers will need to update their connectors. This is expected
however, since we do not guarantee API compatibility between major versions of HDF5 for advanced
“developer” symbols like the VOL struct.

4.3 New API functions
The two new functions, H5Dread_multi() and H5Dwrite_multi() are outlined here. Asynchronous
versions of these functions, H5Dread_multi_async() and H5Dwrite_multi_async() are also being
introduced.

4.3.1 H5Dread_multi()

The C API function description is shown below.

1. herr_t H5Dread_multi(size_t count,
2. hid_t dset_id[],
3. hid_t mem_type_id[],
4. hid_t mem_space_id[],
5. hid_t file_space_id[],
6. hid_t dxpl_id,
7. void *buf[] /*out*/);

 Parameters:

• count: the number of datasets being accessed (the length of the arrays).

• mem_type_id: array of memory type IDs.

May 23, 2022 RFC THG 2012-08-28.v8

Page 9 of 14

• mem_space_id: array of memory dataspace IDs.

• file_space_id: array of file dataspace IDs.

• dxpl_id: dataset transfer property.

• buf: array of read buffers.

 Return:

• A non-negative value if successful; otherwise returns a negative value.

The Fortran API is,

1. SUBROUTINE H5Dread_multi_f(count, dset_id, mem_type_id, mem_space_id, file_space_id, buf, &
2. hdferr, dxpl_id)
3. IMPLICIT NONE
4.
5. INTEGER(SIZE_T), INTENT(IN) :: count
6. INTEGER(HID_T), INTENT(IN), DIMENSION(1:count) :: dset_id
7. INTEGER(HID_T), INTENT(IN), DIMENSION(1:count) :: mem_type_id
8. INTEGER(HID_T), INTENT(IN), DIMENSION(1:count) :: mem_space_id
9. INTEGER(HID_T), INTENT(IN), DIMENSION(1:count) :: file_space_id
10. TYPE(C_PTR), DIMENSION(1:count) :: buf
11. INTEGER, INTENT(OUT) :: hdferr
12. INTEGER(HID_T), INTENT(IN), OPTIONAL :: dxpl_id

This routine performs collective or independent I/O reads from multiple datasets. In collective mode,
all process members of the communicator associated with the HDF5 file must participate in the call.
Each process creates the information required to perform each read in the arrays of parameters and
passes the array through to H5Dread_multi().

Brief description for internals after being called:

• Each process constructs an MPI-derived datatype describing the sections from multiple datasets
in an HDF5 file to be read.

• All processes end up calling MPI_File_read_at_all() once each for collective I/O or
MPI_File_read_at() once each for independent I/O.

• Each process tidies up and then returns the desired data into the buffer of the info[] array
structure.

All processes are required to pass the same property values for the dxpl_id.
All datasets are required to be in the same file, and this file must be the same across all processes.
All processes must pass the same count and the same list of datasets. Other array parameters may
differ.
All array parameters must have a length of count.
Refer to the example section for a better understanding of usage.
The same rule applies to H5Dwrite_multi(), detailed in the following section.

4.3.2 H5Dwrite_multi()

The API function description is as shown below.

8. herr_t H5Dwrite_multi(size_t count,
9. hid_t dset_id[],
10. hid_t mem_type_id[],
11. hid_t mem_space_id[],

May 23, 2022 RFC THG 2012-08-28.v8

Page 10 of 14

12. hid_t file_space_id[],
13. hid_t dxpl_id,
14. const void *buf[] /*out*/);

 Parameters:

• count: the number of datasets being accessed (the length of the arrays).

• mem_type_id: array of memory type IDs.

• mem_space_id: array of memory dataspace IDs.

• file_space_id: array of file dataspace IDs.

• dxpl_id: dataset transfer property.

• buf: array of write buffers.

 Returns:

• A non-negative value if successful; otherwise returns a negative value.

The Fortran API is,

1. SUBROUTINE H5Dwrite_multi_f(count, dset_id, mem_type_id, mem_space_id, file_space_id, buf, &
2. hdferr, dxpl_id)
3. IMPLICIT NONE
4.
5. INTEGER(SIZE_T), INTENT(IN) :: count
6. INTEGER(HID_T), INTENT(IN), DIMENSION(1:count) :: dset_id
7. INTEGER(HID_T), INTENT(IN), DIMENSION(1:count) :: mem_type_id
8. INTEGER(HID_T), INTENT(IN), DIMENSION(1:count) :: mem_space_id
9. INTEGER(HID_T), INTENT(IN), DIMENSION(1:count) :: file_space_id
10. TYPE(C_PTR), DIMENSION(1:count) :: buf
11. INTEGER, INTENT(OUT) :: hdferr
12. INTEGER(HID_T), INTENT(IN), OPTIONAL :: dxpl_id

This routine performs collective or independent I/O writes to multiple datasets. In collective mode, all
process members of the communicator associated with the HDF5 file must participate in the call.
Each process creates the information required to perform each write in the arrays of parameters, and
passes the array through to H5Dwrite_multi().
Note that when overlapping selections are used, the data stored in the file for the overlapping regions is
undefined (as is the case for H5Dwrite).

Brief description for internals after being called:

• Each process constructs an MPI derived type describing the sections from multiple datasets in
an HDF5 file to be written.

• All processes ends up calling MPI_File_write_at_all() once each for collective I/O or
MPI_File_write_at() once each for independent I/O.

All processes are required to pass the same property values for the dxpl_id.
All datasets are required to be in the same file, and this file must be the same across all processes.
All processes must pass the same count and the same list of datasets. Other array parameters may
differ.
All array parameters must have a length of count.
Refer to the example section for a better understanding of usage.
The same rule applies to H5Dwrite_multi(), detailed in the following section.

May 23, 2022 RFC THG 2012-08-28.v8

Page 11 of 14

4.4 Example cases

These examples are based on the assumption that using multi-read API on an HDF5 file with four
datasets, ‘d1’, ‘d2’, ‘d3’ and ‘d4’. Using multi-write API would be practically identical.
Pseudocode is used to show how the API can be used in a simplified manner focusing on this task’s
scope.

4.4.1 Example1: all processes read from the same datasets ‘d1’, ’d2’ and ‘d3’

Consider the following as an example running with two processes:

• Rank 0 process (P0) reads data portions from datasets ‘d1’, ‘d2’, and ‘d3’.

• Rank 1 process (P1) reads data portions from datasets ‘d1’, ‘d2’ and ‘d3’.

Chart view:

 An HDF5 file

Pseudocode below:

 Open datasets ‘d1’, ‘d2’ and ’d3’
 Make selections from each dataset.
 Set ‘dxpl’ for collective operation.
 Set ‘mem_type_ids’, ‘mem_space_ids’, and ‘bufs’ arrays as appropriate.

 size_t count = 3 /* three datasets */
 If (mpi_rank == 0) /* P0 */

 hid_t file_space_ids[3] = { {d1’s P0 select}, {d2’s P0 select}, {d3’s P0 select} }

 If (mpi_rank == 1) /* P1 */
 hid_t file_space_ids[3] = { {d1’s P1 select}, {d2’s P1 select}, {d3’s P1 select} }

 H5Dread_multi (count, mem_type_ids, mem_space_ids, file_space_ids, dxpl, bufs)

4.4.2 Example2: each process read from different datasets or none
Consider the following as an example running with three processes:

• Rank 0 process (P0) reads data portions from datasets ‘d1’, ‘d2’, and ‘d3’.

• Rank 1 process (P1) reads data portions from datasets ‘d3’ and ‘d4’.

• Rank 2 process (P2) does not read anything.

Chart view:
 An HDF5 file

P0 P1

d1

P0
P1

d2

P1

d3

p0

d4

May 23, 2022 RFC THG 2012-08-28.v8

Page 12 of 14

Pseudocode below:

 Open datasets ‘d1’, ‘d2’,’d3’ and ‘d4’
 Make selections from each dataset.
 Set ‘dxpl’ for collective operation.
 Set ‘mem_type_ids’, ‘mem_space_ids’, and ‘bufs’ arrays as appropriate.

 If (mpi_rank == 0) /* P0 */

 count = 3; /* three datasets */
 hid_t file_space_ids [3] = { {d1’s P0 select}, {d2’s P0 select}, {d3’s P0 select} }

 If (mpi_rank == 1) /* P1 */
 count = 2; /* two datasets */
 hid_t file_space_ids [2] = { {d3’s P1 select}, {d4’s P1 select} }

 If (mpi_rank >= 2) /* P2 */
 count = 0 /* no dataset access */
 hid_t *file_space_ids = NULL

 H5Dread_multi (count, mem_type_ids, mem_space_ids, file_space_ids, dxpl, bufs)

5 Limitations
While the API will work for any datasets and any I/O, the initial implementation will fall back to
simply performing I/O for one dataset at a time in some cases. It will only perform simultaneous multi
dataset I/O using MPI I/O and only in collective mode. It not initially perform simultaneous multi
dataset I/O on compressed datasets. Note that any other conditions that break collective I/O (datatype
conversion, not contiguous or chunked, etc.) will also break simultaneous multi-dataset I/O.

6 Future Consideration
In addition to addressing the limitations outlined above, according to some discussions, we may be
able to consider developing H5Dcreate_multi(), H5Dopen_multi() and H5Dclose_multi() APIs in the
future as separate tasks if necessary or requested by the user.

7 Code Repository
The latest version of the multi-dataset branch can be found at
https://github.com/HDFGroup/hdf5/tree/feature/multi_dataset

d1

P0

d2

P1

d3 d4

P0
P0

P1

https://github.com/HDFGroup/hdf5/tree/feature/multi_dataset

May 23, 2022 RFC THG 2012-08-28.v8

Page 13 of 14

[1] Yang M and Koziol Q, 2006. Using collective IO inside a high performance IO software package—
HDF5 Technical Report National Center of Supercomputing Applications
[2] Rob Latham, Chris Daley, etc., March 2012. A case study for scientific I/O: improving the FLASH
astrophysics code, http://iopscience.iop.org/1749-4699/5/1/015001/article
[3] Qiao Kang, Scot Breitenfeld, Kaiyuan Hou, Wei-keng Liao, Robert Ross, and Suren Byna,
December 2021. Optimizing Performance of Parallel I/O Accesses to Non-contiguous Blocks in
Multiple Array Variables, 2021 IEEE International Conference on Big Data (Big Data),
https://ieeexplore.ieee.org/document/9671638

http://iopscience.iop.org/1749-4699/5/1/015001/article
https://ieeexplore.ieee.org/document/9671638

May 23, 2022 RFC THG 2012-08-28.v8

Page 14 of 14

Revision History

August 28, 2012: Version 1 by Peter Cao. Circulated internally.
Sep 27, 2012: Version 2: updated based on internal reviews.
Feb 15, 2013: Version 3: Updated based on internal reviews. Revised APIs and related

contents.
The task entry is HDFFV-8313 in JIRA.

March 04, 2013: Version 3.1: Updates based on internal reviews. More updates and add an
example section.

March 07, 2013: Version 3.2: Some minor updates. Add chart view in the example section.

March 12, 2013 Version 3.3: Some updates from an internal presentation on 03-08-2013.

March 21, 2013 Version 4: revised based on the comments from the internal presentation on
03-08-2013.

January 24, 2022 Version 5: Updated to reflect the status in early 2022.

February 15, 2022 Version 6: Updated based on internal reviews.

May 23, 2022

September 28, 2022

Version 7: Updated to reflect the latest state of development.

Version 8: Updated to reflect the latest state of development.

	1 Introduction
	1.1 Purpose
	1.2 Scope

	2 Use Case
	2.1 Improving FLASH I/O for an ANL project
	2.2 Investigating E3SM performance improvements for the Exascale Computing Project
	2.3 Investigating CGNS performance improvements with multi datasets
	2.4 Stand-alone Benchmark

	3 Functional requirements
	3.1 H5Dread_multi()
	3.2 H5Dwrite_multi()

	4 Implementation design
	4.1 Top-level design
	4.2 Code-level design
	4.2.1 Implementation details
	4.2.2 Selection I/O
	4.2.3 VOL

	4.3 New API functions
	4.3.1 H5Dread_multi()
	4.3.2 H5Dwrite_multi()

	4.4 Example cases
	4.4.1 Example1: all processes read from the same datasets ‘d1’, ’d2’ and ‘d3’
	4.4.2 Example2: each process read from different datasets or none

	5 Limitations
	6 Future Consideration
	7 Code Repository
	Revision History

