
HighFive

Yet another C++ 
wrapper for HDF5

HDF5 User Group Meeting
Saint-Paul-Lez-Durance

Luc Grosheintz
Nicolas Cornu
EPFL
Blue Brain Project

■ 



Portable scientific data formats are vital for 
scientific computing

● The official HDF5 library is versatile and well supported, but it only 
provides a low-level C/C++ interface.

● Several C++ wrapper libraries exist, but are mostly domain-specific 
or incomplete.

Complex Workflows

A requirement for:

✅
✅
✅
✅

Reliable Data Storage Knowledge transfer Long-term maintainability & 
reproducibility

Blue Brain Project 2



I/O is an essential part of
Neuroscience

HDF5 is critical to the Blue Brain Project. We require 
storing millions of neuron morphologies alongside their 
physiological properties, connections, and other data:

As our codebase is mostly written in >=C++11, we 
found the need for a suitable API for HDF5 in C++.

Circuit Building Simulation Reports SONATA Format

Blue Brain Project 3



Vestibulum congue tempus 
lorem ipsum nec dolor

Lorem ipsum dolor sit amet, dolor at  
consectetur adipiscing elit, sed do 
eiusmod tempor. Lorem ipsum dolor sit 
amet, consectetur adipiscing elit, sed do 
eiusmod tempor. Lorem ipsum dolor sit 
amet, consectetur adipiscing elit, sed do 
eiusmod tempor.

Programmer Friendly

Header-only library

API enables concise code
and provides sensible defaults

A Modern C++11 Wrapper

Project started 7 years ago

Active community

16 Releases (9 official). Latest: v2.4.1

Wide Compatibility

Cross platform: Windows, Linux, Mac

Very few requirements: C++11, hdf5-1.8

Supports Eigen, Boost and more

Stability & Performance

Used in production at BBP

Good test coverage, multiple scenarios

Low overhead

Blue Brain Project 4

https://github.com/BlueBrain/HighFive/releases/tag/v2.4.1


■ 

H
ig

hF
iv

e:
 o

ne
 m

or
e 

C
++

 w
ra

pp
er

Lu
c 

G
ro

sh
ei

nt
z -

 N
ic

ol
as

 C
or

nu
EP

FL
 –

 B
lu

e 
B

ra
in

 P
ro

je
ct

HighFive:
Looking under the 
hood

5



HighFive > RAII and resource management

HighFive utilizes RAII to handle object life-times and automatically manages reference 
counting on HDF5 objects from the C library.

The following example uses HighFive datatypes to create and open a dataset “/a/b” and fill 
it with four integers. The scope releases any associated resources:

using namespace HighFive;

...

{
   File file("foo.h5", File::ReadWrite | File::Create);
   DataSet dataset = file.createDataSet("/a/b", std::vector<int>{1,2,3,4});
}

Blue Brain Project 6



HighFive utilizes RAII to handle object life-times and automatically manages reference 
counting on HDF5 objects from the C library.

The following example uses HighFive datatypes to create and open a dataset “/a/b” and fill 
it with four integers. The scope releases any associated resources:

Blue Brain Project 7

HighFive > RAII and resource management

using namespace HighFive;

...

{
   File file("foo.h5", File::ReadWrite | File::Create);
   DataSet dataset = file.createDataSet("/a/b", std::vector<int>{1,2,3,4});
}

Internally, HighFive transparently manages the creation 
of the Group, DataSpace, Attributes, and more in HDF5

DataSet dataset = file.createDataSet("/a/b", std::vector<int>{1,2,3,4});



HighFive > Type Conversion / Induction

The library uses C++ templating for automatic type mapping, even of non-contiguous 
types. This increases programmer productivity while reducing coding bugs:

Example with STL Container

...

std::vector<std::vector<double>> d2 = make_matrix();

file.createDataSet("/group/d2", d2);

...

Non-contiguous type conversion
for read / write, and primitive types

Blue Brain Project 8



HighFive > Type Conversion / Induction (Continuation)

In addition to the support for standard types (e.g., std::vector , std::map, …), HighFive 
supports types from Boost, Eigen, XTensor, and others. Here is another example:

Equivalent 2D matrix example
using different supported types

Example with Boost

boost::multi_array<double, 2> d2(boost::extents[5][3]);

file.createDataSet("/group/d2", d2);

Example with Eigen

Eigen::MatrixXd d2 = Eigen::MatrixXd::Random(5, 3);

file.createDataSet("/group/d2", d2);

Example with Boost uBLAS

using UBlasMatrix = typename

  boost::numeric::ublas::matrix<double>;

file.createDataSet("/group/d2", UBlasMatrix(5,3));

Blue Brain Project 9



HighFive > Example

With HighFive, we can easily create a 
source code example that illustrates the 
creation of an HDF5 file with:

1. A dataset with a vector of integers 
that has an attribute for the units.

2. A dataset with 2D matrix based on 
a non-contiguous datatype.

The example on the right also shows 
how to read back one of the datasets.

Blue Brain Project

using namespace HighFive;

...

File file("tmp.h5", File::ReadWrite | File::Create);

// Create DataSet and write data (short form)
file.createDataSet("/group/d1",
                   std::vector<int>{1,2,3,4,5});

// Attribute supported
file.createAttribute("/group/d1/units",
                     std::string("cm/s"));

// Nested STL containers
std::vector<std::vector<double>> d2 = make_matrix();
file.createDataSet("/group/d2", d2);

// Reading
std::vector<int> d1_read;
file.getDataSet("/group/d1").read(d1_read);

...

Blue Brain Project 10



HighFive > Advanced Features

HighFive is built with scientific applications in mind. The library supports advanced 
features that eases the development of complex C++ applications, while maintaining the 
source code readability. These are some of the most relevant:

pHDF5 Support Chunking & Compression Native HDF5 Interaction

...
Hi5

+

Blue Brain Project 11



Blue Brain Project 12

HighFive > Advanced Features

HighFive is built with scientific applications in mind. The library supports advanced 
features that eases the development of complex C++ applications, while maintaining the 
source code readability. These are some of the most relevant:

Chunking & Compression Native HDF5 Interaction

...
Hi5

+

pHDF5 Support

...
File file("parallel_highfive.h5" ,
         File::ReadWrite | File::Create | File::Truncate,
         MPIOFileDriver (MPI_COMM_WORLD, MPI_INFO_NULL));
...

The only requirement is to use the MPIOFileDriver in the 
File opening. No other special API calls are required.



HighFive > Advanced Features (Continuation)

HighFive is built with scientific applications in mind. The library supports advanced 
features that eases the development of complex C++ applications, while maintaining the 
source code readability. These are some of the most relevant:

pHDF5 Support Chunking & Compression Native HDF5 Interaction

...
Hi5

+

Blue Brain Project 13



Blue Brain Project 14

HighFive > Advanced Features (Continuation)

HighFive is built with scientific applications in mind. The library supports advanced 
features that eases the development of complex C++ applications, while maintaining the 
source code readability. These are some of the most relevant:

pHDF5 Support Native HDF5 Interaction

...
Hi5

+

...
DataSetCreateProps props;
props.add(Chunking(std::vector<hsize_t>{2, 2}));
props.add(Deflate(9));
file.createDataSet("/group/d2", d2, props);
...

Group properties can be set 
for compression, chunking 

and much more

Chunking & Compression



HighFive > Advanced Features (Continuation)

HighFive is built with scientific applications in mind. The library supports advanced 
features that eases the development of complex C++ applications, while maintaining the 
source code readability. These are some of the most relevant:

pHDF5 Support Chunking & Compression Native HDF5 Interaction

...
Hi5

+

Blue Brain Project 15



Blue Brain Project 16

HighFive > Advanced Features (Continuation)

HighFive is built with scientific applications in mind. The library supports advanced 
features that eases the development of complex C++ applications, while maintaining the 
source code readability. These are some of the most relevant:

pHDF5 Support Chunking & Compression

......
File file("myfile.h5");
std::cout << H5Fget_freespace (file.getId()) << std::endl;
...

HighFive gives access to the native types of HDF5
and allows the user to call non-supported functionality

Native HDF5 Interaction

Hi5
+



CPU time to write a 2D dataset [1M x 10 ints] 200 times (8 GB total)

HighFive’s performance 
overhead compared to 
HDF5 code in C

● Naively writing row-by-row 
performs ~15 times slower.

● Fastest hand-written code 
took profiling and careful 
optimization and is 
substantially longer than the 
HighFive code (28 lines vs. 
2 lines).

Blue Brain Project 17



Challenges

Blue Brain Project 18

Despite the longevity of the project, we are still working on several challenges:

● Multi-threading within HDF5
○ Multi-threaded I/O is funneled either by the library or MPI user. Fully parallel 

read-access would be a really useful feature to have.

● # of datasets or groups scalings
○ Inserting O(1e6) of groups into a single HDF5 container on spinning disks gives 

notable latency of group retrieval, slow to construct such large files.

● Support for mapping user defined, deeply nested, compound data types 
easily



■ 

H
ig

hF
iv

e:
 o

ne
 m

or
e 

C
++

 w
ra

pp
er

Lu
c 

G
ro

sh
ei

nt
z -

 N
ic

ol
as

 C
or

nu
EP

FL
 –

 B
lu

e 
B

ra
in

 P
ro

je
ct

Public repo: https://github.com/BlueBrain/HighFive
More information: https://go.epfl.ch/hi5

Thank you for listening

Questions?

Thanks 19

https://github.com/BlueBrain/HighFive
https://go.epfl.ch/hi5

