Yet another C++
wrapper for HDF5

Luc Grosheintz -
Nicolas Cornu / ( — -
= EPFL . o ™ 2 i
Blue Brain Project Y . A HDF5 User Group Meeting (ISR

Saint-Paul-Lez-Durance




Portable scientific data formats are vital for
scientific computing

A requirement for:

SISISIS

QQ )

Complex Workflows Reliable Data Storage Knowledge transfer Long-term maintainability &
reproducibility

e  The official HDF5 library is versatile and well supported, but it only
provides a low-level C/C++ interface.

e  Several C++ wrapper libraries exist, but are mostly domain-specific
or incomplete.

E P F L Blue Brain Project

2



Blue Brain Project

I/O is an essential part of
Neuroscience

HDFS5 is critical to the Blue Brain Project. We require
storing millions of neuron morphologies alongside their
physiological properties, connections, and other data:

o -

U AL R «‘)) ALLEN INSTITUTE
ﬂuﬂ,M,JJ,Lu%J_ﬂ\l%ﬂw z \ X/ BRAIN SCIENCE
sl Bt blbd ==

Circuit Building Simulation Reports SONATA Format

As our codebase is mostly written in >=C++11, we
found the need for a suitable APl for HDF5 in C++.

E P F L Blue Brain Project 3



H BlueBrain / HighFive ' Public <% EditPins ~

=PrL

A Modern C++11 Wrapper

Project started 7 years ago
Active community

16 Releases (9 official). Latest: v2.4.1

Wide Compatibility

Cross platform: Windows, Linux, Mac
Very few requirements: C++11, hdf5-1.8

Supports Eigen, Boost and more

® Unwatch 24 ~ % Fork 112

Programmer Friendly

Header-only library

API enables concise code
and provides sensible defaults

Stability & Performance

Used in production at BBP
Good test coverage, multiple scenarios

Low overhead

Starred 432

Blue Brain Project


https://github.com/BlueBrain/HighFive/releases/tag/v2.4.1

=PrL

HighFive:
Looking under the
hood




HighFive > RAIll and resource management

HighFive utilizes RAIl to handle object life-times and automatically manages reference
counting on HDF5 objects from the C library.

The following example uses HighFive datatypes to create and open a dataset “/a/b” and fill
it with four integers. The scope releases any associated resources:

using namespace HighFive;

File file("foo.h5", File::ReadWrite | File::Create);
DataSet dataset = file.createDataSet ("/a/b", std::vector<int>{1,2,3,4});

E P F L Blue Brain Project 6



Internally, HighFive transparently manages the creation
of the Group, DataSpace, Attributes, and more in HDF5

DataSet dataset = file.createDataSet ("/a/b", std::vector<int>{1,2,3,4});




HighFive > Type Conversion / Induction

The library uses C++ templating for automatic type mapping, even of non-contiguous
types. This increases programmer productivity while reducing coding bugs:

Example with STL Container

std::vector<std::vector<double>> d2 = make matrix(); } Non-contiguous type conversion
file.createDataSet ("/group/d2", d2); for read / write, and primitive types

E P F L Blue Brain Project 8



HighFive > Type Conversion / Induction

In addition to the support for standard types (e.g., std::vector, std::map, ...), HighFive
supports types from Boost, Eigen, XTensor, and others. Here is another example:

E"““_“:“““_“““““_:“_“““““““: Example with Boost
 Equivalent 2D matrix example |
i USlng dlﬁerent Supported types i boost::multi array<double, 2> d2(boost::extents[5] [3]);

file.createDataSet("/group/d2", d2);

Example with Boost uBLAS
Example with Eigen

using UBlasMatrix = typename
Eigen::MatrixXd d2 = Eigen::MatrixXd::Random(5, 3); boost: :numeric: :ublas: :matrix<double>;

file.createDataSet("/group/d2", d2); file.createDataSet("/group/d2", UBlasMatrix(5,3));

E P F L Blue Brain Project 9



HighFive > Example

With HighFive, we can easily create a
source code example that illustrates the
creation of an HDF5 file with:

1. A dataset with a vector of integers
that has an attribute for the units.

2. Adataset with 2D matrix based on
a non-contiguous datatype.

The example on the right also shows
how to read back one of the datasets.

EPFL

using namespace HighFive;

File file("tmp.h5", File::ReadWrite | File::Create);

// Create DataSet and write data (short form)
file.createDataSet ("/group/dl",
std::vector<int>{1,2,3,4,5});

// Attribute supported
file.createAttribute ("/group/dl/units",
std::string("cm/s")) ;

// Nested STL containers
std: :vector<std::vector<double>> d2 = make matrix();
file.createDataSet ("/group/d2", d2);

// Reading

std::vector<int> dl read;
file.getDataSet ("/group/dl") .read(dl read);

Blue Brain Project 10



HighFive > Advanced Features

HighFive is built with scientific applications in mind. The library supports advanced
features that eases the development of complex C++ applications, while maintaining the
source code readability. These are some of the most relevant:

AT WP

pHDFS5 Support

E P F L Blue Brain Project 11



The only requirement is to use the MPIOFileDriver in the
File opening. No other special API calls are required.

File file ("parallel highfive.h5",

File::ReadWrite | File::Create | File::Truncate,
MPIOFileDriver (MPI COMM WORLD, MPI INFO NULL)) ;

pHDFS5 Support




HighFive > Advanced Features

HighFive is built with scientific applications in mind. The library supports advanced
features that eases the development of complex C++ applications, while maintaining the
source code readability. These are some of the most relevant:

-
L —
—
Chunking & Compression

E P F L Blue Brain Project 13




Group properties can be set
DataSetCreateProps props;

for CompreSSIOHv Chunklng props.add (Chunking (std::vector<hsize t>{2, 2}));

props .add (Deflate (9));
and mUCh more file.createDataSet ("/group/d2", d2, props):

Chunking & Compression




HighFive > Advanced Features

HighFive is built with scientific applications in mind. The library supports advanced
features that eases the development of complex C++ applications, while maintaining the
source code readability. These are some of the most relevant:

Hi5

Native HDF5 Interaction

E P F L Blue Brain Project 15



HighFive gives access to the native types of HDF5
and allows the user to call non-supported functionality

File file ("myfile.h5");
std::cout << H5Fget freespace (file.getlId()) << std::endl;

Native HDF5 Interaction




HighFive's performance
overhead compared to
HDF5 code in C 120 msysCPU muser CPU

100

g

CPU time [Gceycles]
i~
o

N
o

32 32.8

e Naively writing row-by-row 80

performs ~15 times slower. 7 0

g 60 Hand written HighFive

e Fastest hand-written code = optimized

took profiing and careful 40 i &system - hdfS wHighfive @user_program

optimization and is

substantially longer than the

I2-Ii|ghFi\)/e code (28 lines vs. 20

Ines). ;
s —— =gy
Base Hand written HighFive
implementation optimized

CPU time to write a 2D dataset [1M x 10 ints] 200 times (8 GB total)

E P F L Blue Brain Project 17



Challenges

Despite the longevity of the project, we are still working on several challenges:

e Multi-threading within HDF5

o Multi-threaded I/O is funneled either by the library or MPI user. Fully parallel
read-access would be a really useful feature to have.

e # of datasets or groups scalings

o Inserting O(1e6) of groups into a single HDF5 container on spinning disks gives
notable latency of group retrieval, slow to construct such large files.

e Support for mapping user defined, deeply nested, compound data types
easily

E P F L Blue Brain Project 18



=PFL Thanks

Public repo: https://github.com/BlueBrain/HighFive

More information: https://go.epfl.ch/hi5

Thank you for listening

Questions?

more C++ wrapper

" HighFive: one

=
©

Luc Grosheintz - Nicolas C
EPFL - Blue Brain Project


https://github.com/BlueBrain/HighFive
https://go.epfl.ch/hi5

