
1

2022 European HDF5 User Group

01/06/2022

Storing EPICS process variables in HDF5 files 
for ITER 

Rodrigo Castro 1, Yury Makushok 2, Lana Abadie 3, Bertrand Bauvir 3, 
Ralph Lange 3, Andre Neto 4

1Laboratorio Nacional de Fusión, CIEMAT. Madrid. Spain
2MINSAIT - INDRA, Madrid, Spain

3ITER Organization, St Paul lez Durance, France
4 Fusion for Energy, Barcelona, Spain



2

Current context



3

ITER control system organization

 ITER CODAC: Common language for all PS I&C

 Distributed control system based on EPICS



4

Plant Operation Network (PON) data

PON data
- First plasma: > 1M variables
- Operation: > 3M variables



5

Design and implementation consideration

 Time evolution data in steady-state operation
 Requests based on time interval

 Different files along the time can be involved

 Different data nature along the time can be involved

• Different dimensionality

• Different sampling rate

• Different units

• Different datatype

 Data must be accessible on fly
 Data flush timeouts

 Real time indexing mechanism

• New files / growing files

• New files, open for writing files and closed for writing files must be 
notified



6

Data archiving/retrieving cycle

Archiver

HDF5 files 

repository

uda-indexer

Index databse

UDA Server

metadata

Json
datatype

Client

Data location
+

Metadata
+

Json datatype

Json
datatype

data

Archiver

Archiver

DAN

SDN

PON



7

EPICS Process Variables

 Before EPICS v7: Channel Access Protocol

 Values have a simple composite type
 Timestamp

 Status

 Severity

 Value

 Support a set of primitive data types: integer, double, string, 
enum

 Some metadata can be retrieved
 Enum labels

 Visualization metadata



8

EPICS Process Variables

 Very complex nested 
datatypes can be 
defined

 Can include multiplicity 
at any level

 Structure leafs have 
additional metadata

 After EPICS v7: PVAccess protocol

Example

flat_structure.txt


9

Channel Access archiving: PON archiver

 SWMR model

 Aggregates the maximum number of PVs in one file

 Implements flush timeout (to warranty maximum read latency)

 HDF5 backend files rotate in some size / time conditions

 Any PV can change on fly:
 Type

 Enum labels

 Display metadata



10

PON archiver (Channel Access archiver)

 HDF5 model
 One group per PV

• Payload dataset: timestamp, status, severity, value

• Dynamic metadata attributes

– Enum labels

– Display metadata

 Until 80K PVs / file



11

PON archiver (Channel Access archiver)

 Challenges
 Memory problem

• HDF5 caches must be correctly managed

 Expensive file rotation

• Creation of all objects have big CPU usage and takes significant time 

• File rotation in asyn mode (separate thread)

 If a change in PV property: datatype, units, enum labels

• New individual file is created until next rotation

 Performance problem for flushing updated PVs

• One flush for all file at the end of the loop (avoiding flush per 
dataset)



12

PVaccess archiving: PVA archiver

 SWMR model

 Manages big nested datatypes

 Autodiscovery PV datatype

 PV datatype can change



13

Big nested datatype: some alternatives

 Use opac datatype + datatype definition
 Breaks our current model based on HDF5 types

 Mandatory to read all data structure just for one field

 Flat nested structure: 1 composite field
 Cases of 16K fields (10 DAQ boards)

 HDF5 limitations: maximum about 1300 fields

 One dataset per field
 Good read performance

 Poor write performance: 1 write -> 16K writes



14

Big nested datatype: first implementation

 Flat structure break algorithm

 Iterates flatten structure trying to:
 Find the longest common path (trying to group as much as possible)

• Until aggregation limit (number of fields or size limit) is achieved

 Check if this path already exists in the file

• If exists -> necessary to force a new break with 1 level longer paths 
(less aggregation)

• Add a group for the found path name

• With a composite fields payload dataset that aggregates all data 
under the found path name 



15

Big nested datatype: first implementation

 Flat structure break algorithm

 Pros:
 Current HDF5 archiving model (reading, indexing) is valid

 Level of aggregation (size of datasets) is configurable

 Good aggregation results / universal algorithm : Breaks 8K fields (5 DAQ 
boards) -> 220 datasets

 Cons:
 HDF5 structure is not visually a 1-to-1 map of the original nested 

structure



16

Big nested datatype: second implementation

 Group-tree data model
 Structure is mapped to a group-tree model

• Structure -> group

• Data -> dataset

Group Dataset

Group Group

Group

Dataset

Dataset

Dataset

Field

Field

Field

Field

Field

Field

Field

Field

Field

Field

Field

Field

Field



17

Big nested datatype: second implementation

 Group-tree data model

 Pros:
 HDF5 structure maps 1-to-1 the original nested structure

 Easy to extract a subtree of data

 Read performance 

 Cons:
 Not already a complete solution in case of leaf composite datatype 

with more than 1300 fields (is really a limitation?) 



18

Common Architecture

listener backend

Main program

Backend specific 

configuration

Main configuration

Listener plugin Backend plugin

Many CODAC 
servervs with the 
same engine



19

PON archiver implementation

PVA Listener 

: PVMonitor HDF5 backend

H5 File

PON Archiver

PVA Listener 

: PVMonitorPVA Listener 

: PVMonitor
Channel 

Access 

Listener

XML config file



20

PVA archiver implementation

PVA Listener 

: PVMonitor
HDF5 backend

H5 File

PVA Archiver

PVA Listener 

: PVMonitorPVA Listener 

: PVMonitorPVA Listener 

: PVMonitor

HDF5 backend
HDF5 backend

HDF5 backend

H5 File
H5 File

H5 File

XML config file



21

Questions?

Thank you for your attention


