
Business Sensitive Information

ExaIO: Delivering Efficient Parallel I/O on
Exascale Computing Systems with HDF5 and UnifyFS

PI: Suren Byna (Lawrence Berkeley Lab)

Co-PIs: Scot Breitenfeld (The HDF Group), Kathryn Mohror (LLNL), Sarp Oral (ORNL), and

Venkat Vishwanath (ANL)

June 1st , 2022

2

2.3.4.15. ExaIO Team
• Team members

– HDF5: Suren Byna1, Scot Breitenfeld3, Venkat Vishwanath2, Houjun Tang1,
Jean Luca Bez1, Huihuo Zheng2, Neil Fortner3, Dana Robinson3, Jordan
Henderson3, Neelam Bagha3, Michela Becchi6, John Ravi6

– Alumni: Quincey Koziol1, Qiao Kang1, Jerome Soumagne3, John Mainzer3,
Richard Warren3, Elena Pourmal3

– UnifyFS: Kathryn Mohror4, Sarp Oral5, Adam Moody4, Cameron Stanavige4,
Michael Brim5, Seung-Hwan Lim5, Ross Miller5, Swen Boehm5

1. LBNL
2. ANL
3. The HDF Group
4. LLNL
5. ORNL
6. NCSU

3Slide from Doug Kothe

4

ExaIO Project – Enhancing HDF5 and Developing UnifyFS

• HDF5: Parallel I/O API, library, and file format

• HDF5 is a self-describing file format, API, and tools
designed to store, access, analyze, share, and
preserve diverse, complex data in continuously
evolving heterogeneous computing and storage
environments

• UnifyFS: A file system for burst buffers

• UnifyFS presents a shared namespace across
distributed storage to read/write files easy and fast

HDF5

5

ExaHDF5 mission - Applications, features, and tuning

• Many ECP Apps have a dependency on HDF5-based I/O
• 17 critical, 11 important, 8 interested

Applications

New Features

Tuning &
Maintenance

Support ECP apps and ST tools achieve
performant I/O with HDF5

Develop features that make HDF5 ready for
exascale architectures

Tune existing HDF5 capabilities to perform
well at large scale

6

HDF5 capability integration - Active AD team interactions
ECP AD team Type of engagement Status ExaIO POC(s) / ECP team POC(s)
EQSIM Development of I/O framework

based on HDF5
Implemented most of the components,
tuning at large scale

Suren Byna, Houjun Tang / Houjun Tang

AMReX Development of HDF5 I/O Implemented HDF5 I/O, adding
compression

Suren Byna, Houjun Tang / Ann Almgren, A. Myers

QMCPACK (KPP-3) File close performance issue Improved performance Venkat Vishwanath / Ye Luo, Paul Kent

ExaSky - Nyx Integrated I/O in AMReX, adding
compression support

Developed a new file layout and adding
compression

Houjun Tang / Zarija Lucic

Subsurface simulation I/O performance tuning Improved performance Suren Byna, Houjun Tang / Brian van Straalen

FLASH-X Implemented async I/O routines Testing performance at large scale Houjun Tang / Rajeev Jain

ExaSky – HACC I/O performance tuning Tuning performance - subfiling Scot Breitenfeld / Salman Habib

WarpX / OpenPMD Tuning HDF5 I/O performance of
OpenPMD

Tuned I/O performance by 10X for a
benchmark; more potential for
performance improvement

Suren Byna, Jean Luca Bez / Junmin Gu and Axel
Huebl

E3SM Improving HDF5 performance Identified multi-dataset API improves
performance; tuning further

Suren Byna, Qiao Kang / Jayesh Krishna, Danqing Wu

Lattice QCD,
NWChemEx, CANDLE

I/O using HDF5 Initial communications w/ the AD teams Suren Byna, Venkat Vishwanath / Chulwoo (LQCD),
Ray Bair (NWChem), Venkat (CANDLE)

ExaLearn I/O for ML applications Performance evaluation and testing cache
VOL

Suren Byna, Huihuo Zheng / Peter Nugent

7

HDF5 Applications: EQSIM
• A framework for regional-scale earthquake fault-to-

structure simulations

• I/O and data management challenges
– Easy-to-use data and file format for EQSIM workflows
– Increased volume of data
– Compressing checkpoint and multiple data products

• HDF5 benefits for EQSIM
– Using HDF5 files reduced input time from hours to minutes for

a 3600-node run on Summit
– HDF5’s self-describing format and portability allows

convenient data sharing among scientists
– Improved I/O performance for both input and output data
– Reduced number of time-history files from thousands to 1 per

simulation
– Transparent compression capability allows saving and analyzing

more data pain-free

Compared to SAC format that generates file-per-process
Cori - HDF5 is 5X to 9X faster using burst buffers
Summit - HDF5 output is 20% faster

Used ZFP as a HDF5 filter
13X performance improvement
Compression ratio > 260Application POCs: D. McCallen, H. Tang, and N. Petersson

8

HDF5 Applications: Nyx and Castro with AMReX

• AMReX - block-structured AMR framework for solving
systems of PDEs on exascale architectures

• Supports five ECP AD projects - WarpX, ExaStar, Pele,
ExaSky, and MFIX-Exa

• I/O is based on native binary format and HDF5 file format

• ExaIO team is developing and tuning the HDF5 I/O
– Integrated HDF5 I/O framework in AMReX
– Upgraded HDF5 I/O with asynchronous I/O that effectively

overlaps I/O latency with computations à ~4X speedup for 5
time steps

– Work in progress
• Updating file layout for achieving better compression of data

NyX workload, single refinement level,
writes 385 GB x 5 steps

Castro workload, three refinement levels,
writes 559 GB x 5 steps

Application POCs: A. Almgren, A. Myers, Z. Lucic, J. Sexton, and K. Gott

9

HDF5 Applications: E3SM
• E3SM - A large-scale climate simulation model

• E3SM I/O uses PIO library, built using multiple file formats
– NetCDF-4 (which uses HDF5 internally) and PnetCDF
– NetCDF-4 I/O has been suffering from poor I/O performance

• Benchmark with HDF5 API (without NetCDF-4)
– Collaboration with DataLib and E3SM teams
– Two versions of HDF5 benchmark that maintains canonical

ordering of data from the application
• Using regular write/read API

• Using multi-dataset API that allows reading/writing multiple requests
with a single API call

– Multi-dataset API and further tuning on file system shows up to
10X improvement for the F case

– Working on integrating the multi-dataset API branch in HDF5
– Exploring further optimizations - DataLib team’s log-based VOL

Benchmark code integrated in: https://github.com/Parallel-NetCDF/E3SM-IOApplication POCs: J. Krishna and D. Wu

10

Representative I/O benchmarks / kernels - h5bench
• h5bench - HDF5 I/O kernel suite for exercising common

parallel I/O patterns to compare various HDF5 features

• Exercises I/O operations (read, write, streaming append,
modify), data locality, file layout, I/O modes (synchronous and
asynchronous), MPI-IO tuning options (collective buffering), file
system configurations (alignment, striping, etc.)

• Metadata stress tests

• Application kernels
– AMReX (Nyx and Castro configurations)

– OpenPMD (WarpX configuration)

– E3SM I/O kernel

– More HDF5 benchmarks from the community

https://github.com/hpc-io/h5bench

11

Exascale readiness - Summary of ExaIO HDF5 features and status
HDF5 component Development status Impact (Apps) Systems used for testing
Virtual Object Layer
(VOL) framework

Integrated in the HDF5
maintenance releases (1.12.x)
VOL 2.0 is in 1.13.0 pre-release

Enables using HDF5 on novel current and future
storage systems easily (ExaIO, DataLib, ADIOS, and
others)

Summit, Cori, Theta, Spock, and other testbeds

Asynchronous I/O Released v.1.0 Allows overlapping I/O latency with compute phase
(EQSIM, AMReX apps, external)

Summit, Cori, Theta, Spock, Perlmutter, and other
testbeds

Cache VOL Released v.1.0 Allows using node-local memory and/or storage for
caching data (On systems w/ node-local
memory/storage resources, ML apps)

Summit, Theta, and Cori

GPU I/O Developed pluggable VFD in
HDF5 (in 1.13.0 pre-release)
GPU I/O VFD v.1 is released

GPU I/O VFD allows using NVIDIA’s GPU Direct
Storage (GDS) (Apps on GDS enabled GPUs,
pluggable VFD allows developing new VFDs)

Tested on NVIDIA systems and a local server
(Dependencies: GPUs that are GDS compatible
and NVIDIA GDS driver installation)

Subfiling Selection I/O has been
implemented and integrated in
HDF5
Implementation in progress

Allows writing/reading multiple subfiles (instead of
single shared file) (Testing w/ h5bench)

Testing on Summit and Cori

Multi-dataset I/O API A prototype available; design
updates in progress

Allows writing multiple HDF5 datasets with a single
write/read call (E3SM)

Prototype was tested on Summit and on Cori with
E3SM F and G case configurations

h5bench Released v.1.1 Allows testing a diverse set of I/O patterns and app
kernels with various HDF5 features (Broad)

Summit, Theta, Perlmutter

Parallel compression Released in HDF5
maintenance

Evaluating performance and tuning as needed
(EQSIM, AMReX applications, and others)

Evaluating performance on Summit and Cori with
EQSIM checkpointing using ZFP compression

Green: In HDF5 library internal

Blue: External plugins / connectors

12

Features: Asynchronous I/O
• Pass-through VOL connector with background threads

performing I/O operations, using Argobots

• Two modes
– Implicit: For unmodified applications by setting env. variable
– Explicit: For applications that want more control of async

operations, such as when to trigger async I/O

• Built and tested on all major platforms and exascale
testbeds
– Summit, Spock, Cori, Perlmutter, and other testbeds

https://github.com/hpc-io/vol-async

Application Status
Nyx and Castro (via
AMReX)

Integrated in AMReX codebase

FLASH-X Prototype code developed and
performance tuning in progress

EQSIM Developed code to integrate
asynchronous I/O for checkpointing,
testing is in progress

OpenPMD Code development is in progress

A NASA Ames
application

An external user integrated async
I/O; testing and tuning performance

Application integration status

nodes
Async I/O
speedup

App
speedup

1 7.87 1.03
2 14.71 1.14
3 19.50 1.21
4 20.35 1.23
5 13.32 1.26
6 9.31 1.24
7 6.61 1.27

A FLASH-X configuration on
Summit

VPIC-IO on Cori BD-CATS-IO on Cori

Weak scaling
Strong scaling

E4S integration:
o Spack package and CI are available

13

Features: Caching with node-local memory and storage
• Use node-local memory and storage to reduce the

performance gap between memory and long-term
storage

• Developed “Cache” VOL connector
– Node-local memory
– Node-local storage, including “remote” node-local
– Shared burst buffer storage layer

• Stacked cache and asynchronous I/O VOL connectors
– Cache VOL focuses on using node-local memory and

storage locations (“space-shifting” operations)
– Async I/O VOL to perform data movement and HDF5 file

operations asynchronously (“time-shifting” operations)

• Implicit VOL -- no code changes needed and
environment variable set

https://github.com/hpc-io/vol-cache

E4S integration:
o Spack package to be committed and CI is available

Improvement of h5bench write bandwidth with Cache VOL on Summit with
GPFS file system and Theta with Lustre file system. The data, 32MB per
process, were cached first on the node-local storage, NVMe / SSD, and moved
to the parallel file system asynchronously. 16 MB alignment was set on Summit
for optimal HDF5 performance.

Cache VOL reduces the training time by 2x for read intensive deep learning
applications: CosmoFlow and AlexNet with TensorFlow. The datasets are
loaded from a single HDF5 file through h5py and tf.data pipeline. The size of
the dataset is 8 TB for CosmoFlow and 180 GB for AlexNet. Experiments
were performed on 128 A100 GPUs @ Theta.

AlexNetCosmoFlow

14

Features: GPU I/O

• File I/O to move data between GPUs and storage devices
becomes critical

• HDF5 team efforts (with contingency funding):
– Developed pluggable Virtual File Driver (VFD) infrastructure
– VFD for NVIDIA’s GPU Direct Storage (GDS)

• Performance benefits with larger data sizes
• Integrated into HDF5 (https://github.com/hpc-io/vfd-gds)

– Asynchronous data movement between GPU and CPUs, and
between CPU and storage
• Testing h5bench read/write patterns with GPU memory
• Initial results show significant benefit when overlapping write time

and transfers between CPU and GPU
• Designing integration with HDF5 using async and cache VOL

connectors
• More testing on GPUs from more vendors
• Considering RAJA, Kokkos, HIP, Sycl, One API, etc.

https://github.com/hpc-io/vfd-gds

15

Tuning: Visualizing I/O performance

• To better identify I/O performance bottlenecks
– Developed DXT Explorer to visualize Darshan Extended Traces
– In collaboration with the DataLib Darshan team
– PDSW 2021 paper (held in conjunction with SC21)

• Identified and tuned performance of
– WarpX, FlashIO, 3D decomposition benchmarks
– 2X to 19X performance improvements

github.com/hpc-io/dxt-explorer

docker pull hpcio/dxt-explorer

FlashIO benchmark on Summit - Baseline vs. Optimized

16

Take home

• ECP ExaIO - HDF5 project
– Supports numerous exascale applications to use HDF5 efficiently

– Features
• Async I/O, caching and prefetching using node-local storage, subfiling, multi-

dataset I/O API, parallel compression tuning, GPU Direct Storage (GDS) VFD

– Tools
• h5bench parallel I/O benchmark suite
• DXT Explorer for visualizing I/O performance

17

Thank you!

• Contacts
– Suren Byna (LBNL) SByna@lbl.gov
– Scot Breitenfeld (The HDF Group) brtnfld@hdfgroup.org
– Kathryn Mohror (LLNL) mohror1@llnl.gov
– Sarp Oral (ORNL - OLCF) oralhs@ornl.gov
– Venkat Vishwanath (ANL - ALCF) venkat@anl.gov

HDF5 User Support:
HDF Helpdesk: help@hdfgroup.org
HDF Forum: https://forum.hdfgroup.org/

UnifyFS:
Kathryn Mohror: mohror1@llnl.gov

mailto:SByna@lbl.gov
mailto:brtnfld@hdfgroup.org
mailto:mohror1@llnl.gov
mailto:oralhs@ornl.gov
mailto:venkat@anl.gov
mailto:help@hdfgroup.org
https://forum.hdfgroup.org/
mailto:mohror1@llnl.gov

