

2

• HDF5 is a very flexible and powerful data format that is heavily used in
science & engineering – but most of its APIs are rather complex and
difficult

• The HDF5 C library (i.e. the reference API) already has more than 400
functions and each new release of the library adds new functions!

• This puts tremendous technical challenges on users (who are typically
not experts on data format/storage technologies) and ultimately slows
down science and data driven innovation

THE PROBLEM

HDFql to the rescue!

3

• HDFql stands for “Hierarchical Data Format query language” and is a
high-level (declarative) language to manage HDF5 data

• It is designed to be as simple and powerful as SQL – and dramatically
reduces the learning effort and time needed to handle HDF5

• By being a declarative language, users just need to “tell” HDFql what
they want to achieve and it takes care of satisfying requests by dealing
with all HDF5 low-level details – in contrast to imperative languages
(which is the case of all existing HDF5 APIs) where users have to specify
how their requests are handled through a lot of programming and
knowledge of HDF5 low-level details!

THE SOLUTION (HDFql)

4

• Universities

• Research centers

• Biotech companies

• Renewable energy organizations

• Auto industry (electrical vehicles)

• … you name it! :)

WHO IS USING HDFql

5

• HDFql allows the execution of many operations to properly manage
HDF5 (data) in a declarative fashion. These are grouped in four
categories:

– Data Definition Language (DDL): create HDF5 files, create groups, rename datasets, alter
(i.e. extend) dimensions of datasets, copy attributes, …

– Data Manipulation Language (DML): insert (i.e. write) data into datasets or attributes

– Data Query Language (DQL): select (i.e. read) read data from datasets or attributes

– Data Introspection Language (DIL): get group names, get dataset names (eventually stored
in a certain group), get dimensions of attributes, …

HOW HDFql WORKS

6

• CREATE FILE my_file.h5

• CREATE FILE experiment.h5 IN PARALLEL

• CREATE GROUP countries

• CREATE DATASET values AS FLOAT(20, 40) ENABLE ZLIB

HOW HDFql WORKS (DDL)

Create an HDF5 file named “my_file.h5”

Create an HDF5 file named “experiment.h5”
in parallel (i.e. using MPI)

Create a compressed dataset named “values” of
data type float of two dimensions (size 20x40)

Create a group named “countries”

7

• INSERT INTO my_dataset VALUES(3, 5, 7)

• INSERT INTO measurements VALUES FROM EXCEL FILE values.xlsx

• INSERT DIRECTLY INTO raw VALUES(10, 20)

• INSERT INTO dset(0:::1) VALUES FROMMEMORY 0

HOW HDFql WORKS (DML)

Insert (i.e. write) values 3, 5 and 7 into
dataset “my_dataset”

Insert (i.e. write) values from Excel file
“values.xlsx” into dataset “measurements”

Insert (i.e. write) values 10 and 20 directly (i.e. bypass several internal
processing steps of the HDF5 library itself) into dataset “raw”

Insert (i.e. write) values from a user-defined variable (that was
previously registered and assigned to number 0) into the first

chunk of dataset “dset” (using an hyperslab selection)

8

• SELECT FROM values

• SELECT FROMmeasurements INTO EXCEL FILE values.xlsx

• SELECT DIRECTLY FROM raw

• SELECT FROM dset(3) INTO MEMORY 0

HOW HDFql WORKS (DQL)

Select (i.e. read) data from dataset “values”
and populate cursor in use with it

Select (i.e. read) data from dataset “measurements”
and write it into an Excel file “values.xlsx”

Select (i.e. read) data directly (i.e. bypass several
internal processing steps of the HDF5 library itself) from

dataset “raw” and populate cursor in use with it

Select (i.e. read) 4th value of dataset “dset” (using a point
selection) and write it into a user-defined variable (that

was previously registered and assigned to number 0)

9

• SHOW

• SHOW DATASET my_group/

• SHOW LIKE **

• SHOW ATTRIBUTE group2 LIKE **/1|3

HOW HDFql WORKS (DIL)

Show (i.e. get) all objects existing in
current group

Show (i.e. get) all datasets existing in
group “my_group”

Show (i.e. get) all objects recursively
starting from current group

Show (i.e. get) all attributes recursively starting from
group “group2” that contain “1” or “3” in their names

10

• Supports disparate programming languages (C, C++, Java, Python, C#,
Fortran and R) and platforms (Windows, Linux and macOS)

• Supports direct chunk write and read

• Supports both point and (irregular) hyperslab selections

• Supports both serial and parallel HDF5 (i.e. HDF5 + MPI)

• Supports reading data from a text, binary or Excel file and writing it into
an HDF5 dataset/attribute (and vice-versa)

• And many more...

CURRENT FEATURES (IN HDFql 2.4.0)

11

• Expected in Q4 2022

• Support HDF5 library version 1.8.23

• Support pre-/post- processing data via pre-defined functions (using all
nodes & cores available whenever possible) and user-defined functions:
– INSERT INTO dset0 MIN(VALUES) FROM FILE input.txt ===> call pre-defined function “MIN”

to return the minimum value stored in text file “input.txt” and write the value into HDF5
object “dset0”

– SELECT FROM AVG(dset1) IN PARALLEL ===> call pre-defined function “AVG” to calculate
the average value of the data stored in HDF5 object “dset1” in parallel (i.e. using MPI) and
return the value to the user

– SELECT FROM DUMMY(dset2) ===> load shared library “HDFqlDUMMY.so” (dynamically by
HDFql) and call user-defined function “DUMMY” to process the data stored in HDF5 object
“dset2” and return the result (of the processing) to the user

WHAT’S COMING IN HDFql 2.5.0

12

• Support sliding cursors to enable reading a dataset that does not fit in
main memory (RAM) in a sliding fashion through a cursor, allowing a
user to (transparently) load/process the dataset in an out-of-core
manner

• Support automatic allocation of the necessary amount of memory
associated to a user-defined variable based on the type and size of the
data to store (alleviating the user from doing this allocation, which may
be cumbersome)

• Support reading/writing a variable-length dataset/attribute into/from a
user-defined variable in Java (through the ArrayList class) and C#
(through the List class)

• Support the Go programming language through a proper wrapper

WHAT’S COMING IN HDFql 2.5.0 (cont.)

13

• Expected in Q2 2023

• Support HDF5 library version 1.10.x

• Support virtual datasets (VDS)

• Support single-write multiple-readers (SWMR)

• Support dynamically loaded filters

• Support HDF5 data stored in Amazon S3

• Support MATLAB (environment) through a proper wrapper

WHAT’S COMING IN HDFql 3.0.0

14

• HDFql is completely free of charge and can be used both in commercial
and non-commercial products without any restrictions

• Support can be provided by going at https://www.hdfql.com/#contact

• All versions of HDFql ever publicly released are available at
https://www.hdfql.com/releases

• Each released version of HDFql contains:
– Libraries and wrappers for C, C++, Java, Python, C#, Fortran and R

– Examples that illustrate how to use HDFql in these programming languages

– A command-line interface tool named “HDFqlCLI”

– A complete reference manual describing HDFql and its operations

ADDITIONAL INFORMATION

https://www.hdfql.com/
https://www.hdfql.com/releases

