

The story of Hierarchical Semi-Sparse cubes in HDF5

Jiří Nádvorník, Petr Škoda, Pavel Tvrdík HUG meeting 2022 1.6.2022

Operational Programme Researc velopment and Educatio

European Structural and Investment Funds

Introduction

- We need HDF5 for visualization and machine learning on 4D astronomical data (combinations of spectra and images).
- Our use case introduces the following challenges:
 - Data "semi-sparsity"
 - Hierarchical resolution access (similar to GoogleMaps rendering)
 - Need for pre-computed measurement uncertainties
 - Heterogeneous data (spectra and images are coming from different instruments)
- At the current stage, we have implemented a <u>HiSS-Cube</u> framework on top of h5py to support our requirements.
 - We are now working on making the framework scalable via parallel HDF5 library.
- This talk focuses on describing our use case and requirements, our work done so far, and lessons learned for both h5py and HDF5 libraries.

UNIVERSITY

CZECH TECHNICAL

IN PRAGUE

2 semi-sparse 4D cubes

6

4th dimension is time

HiSS-Cube framework data flow

CZECH TECHNICAL

UNIVERSITY

8 Nádvorník, Škoda, Tvrdík | The story of HiSS-Cubes in HDF5 | 31.5. 2022

CTU CZECH TECHNICAL UNIVERSITY IN PRAGUE

Image

Metadata

Spectral

Metadata

32x32

cutout region ref 64x64

cutout

region ref/

- structure in HDFView

• semi_sparse_cube group contains the index tree in a human readable form as a tree of groups.

HDF5 File

- Beneath the lowest (<resolution> group) level of the tree are the datasets as equivalents to imported FITS files.
- dense_cube contains contiguous dense 4D cubes (or other precomputed datasets) for fast machine learning and visualization access.
 - The dense_cube is usually up to 10% of the size of a file.

bject Attribute Info General Object Info					
Attribute Creation	Order:	Creati	Creation Order NOT Tracked		
Jumber of attributes = 2					
Name	Туре	Array S	Value[50]()		
serialized_header	String	Scalar	{"SIMPLE":true,"BITPIX":-32,		
mime-type	String	Scalar	image		

P

parallel architecture detail

UNIVERSITY

10 Nádvorník, Škoda, Tvrdík | The story of HiSS-Cubes in HDF5 | 31.5. 2022

Preprocessing

Testing data

- Input data:
 - SDSS "Stripe 82" images
 - 15 TB uncompressed
 - ~1 million FITS files
 - SDSS spectra (BOSS)
 - 700 GB
 - ~4 million FITS files
- HDF5 file (after Phase 1):
 - ~60 TB
 - ~100 million groups
 - ~20 million datasets

Total runtime of Phase 1 for all images

Python C extension

Total runtime of Phase 1 for all images

Python C extension

Total runtime of Phase 1 for all images

Python C extension

Normalized runtime of Phase 1 per 100 images

h5py

Python C extension

Phase 2+3: parallel HDF5 write bandwidth

- Peak bandwidth of the underlying GPFS measured with iozone:
 - 18167 MB/s sequential write
 - 2802 MB/s random write

HiSS-Cube write bandwidth:

• Chunked dataset layout (128, 128, 2)

Number of	Write bandwidth	Efficiency /	
workers	Total [MB/s]	worker	
8	200.60	100%	
16	386.26	96%	
32	677.15	84%	
48	771.15	64%	
64	667.05	42%	
128	480.33	15%	

	Cluster hardware: 8 nodes			
	CPU:	2x AMD EPYC 7543		
	Memory:	512GB		
	Disk:	2x 480GB SSD SATA 8x 7.3TiB SSD NVME		
	Network:	2x 10Gbps NIC		

Contiguous dataset layout

Number of	Write bandwidth	Efficiency /
workers	Total [MB/s]	worker
8	288.68	100%
16	563.49	98%
32	1071.14	93%
48	1455.16	84%
64	1911.22	83%
128	1587.49	34%

Read bandwidth of dense 4D cube dataset

- Peak bandwidth of theunderlying GPFS measured with iozone:
 - 22 154 MB/s sequential read

dataset:

• HiSS-Cube read bandwidth on the 8-node cluster reading ~4 TB 4D dense cube

Number		Time [s]	Read bandwidth	Read bandwidth	Efficiency /
of worker	S		per node [MB/s]	total [MB/s]	worker
	1	1503.2	2724.93	2724.93	100%
	2	772.0	2652.96	5305.91	97%
	3	558.3	2443.21	7329.64	90%
	4	402.8	2542.08	10168.31	93%
	5	329.7	2484.62	12423.11	91%
	6	296.8	2299.93	13799.57	84%
	7	279.1	2096.22	14673.51	. 77%
	8	246.0	2081.54	16652.34	- 76%
1	6	252.2	1015.10	16241.53	37%
25	6	257.8	62.06	15887.04	- 2%

Summary

- 1. Scalability of HiSS-Cube to PBs of data needs further optimizations, but according to our tests so far, it is feasible overall.
- 2. Implementing Semi-Sparse data support on top of HDF5 is viable.
 - a. Indexing the data is still viable in human-readable format for 60 TB file.
- 3. h5py library is mostly sufficient but we needed to rewrite some parts to Python C extensions to optimize it.
- Future work
 - Phase 1 scalability
 - HDF5 file allocation is not scaling to PBs of data currently.
 - Partial parallelization might help.
 - Moving away from human-readable group structure to dataset-based index.
 - Phase 2-3 scalability
 - Performance of writes to HiSS-Cube is still significantly under thr peak performance of GPFS.

Acknowledgements

- We would like to thank Gerd Heber for very outgoing approach and time spent investigating all issues connected with our work.
- This research is supported by the project OP VVV, Research Center for Informatics, CZ.02.1.01/0.0/0.0/16_019/0000765 of the Czech Ministry of Education, Youth and Sports.
- Computational resources were supplied by the project "e-Infrastruktura CZ" (e-INFRA CZ LM2018140) supported by the Czech Ministry of Education, Youth and Sports.

Backup slides

RESEARCH CENTER FOR

Key requirements on HiSS-Cube

- Uncertainty
 - Storing uncertainties (sigma, error values) along with the data is necessary for fast machine learning processing.
- Hierarchical (multi-resolution) access
 - Both machine learning and later visualization of original data can work much faster on lower resolutions with only small degradation of reliability.
 - HiSS-Cube needs to support access for:
 - Visualization (random access)
 - Machine learning (contiguous access)
- Combining heterogenous semi-sparse data
 - The data is coming from different instruments.
 - The resulting 4D coordinate space is very sparse, but contains dense regions.
- Scalability
 - The system needs to horizontally scale to support petabytes of data.

Desired scalability

- Images
 - LSST (Rubin) observatory will produce 20TB of images per night
 - 1-2 PB for Data Release 1 (DR1), 15 PB for DR11
 - 3.2 Gigapixel per image
- Spectra
 - Instruments will commonly produce 50-100 million spectra per data release
- Images and spectra from multiple instruments can be combined together.

Performance testing – Phase 1-3 I/O profiling

jobid: 925167	uid: 1001	nprocs: 129	runtime: 489 seconds
---------------	-----------	-------------	----------------------

I/O performance *estimate* (at the MPI-IO layer): transferred 310720.8 MiB at 1469.38 MiB/s I/O performance *estimate* (at the STDIO layer): transferred 194.1 MiB at 1.77 MiB/s

2 Semi-sparse 4D cube rotations and slices

CZECH TECHNICAL

UNIVERSITY

2 semi-sparse 4D cubes with errors

UNIVERSITY

Hierarchical aspect of HiSS cubes

- We use HEALPix for spatial indexing (tessellation of sphere).
 - In combination with precomputed lower resolutions we can use the hierarchical aspect for:
 - Quick visualization of original data (images and spectra)
 - Quick training of machine learning models on lower accuracy data.
- The construction of lower resolutions for both images and spectra is non-trivial when we need to preserve scientific accuracy for the measurement errors.
 - Lower resolution is constructed via cubic interpolation and errors propagated accordingly.

