Parallel /0 with HDF5 and
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* A brief overview of past general best practices for HDF5
» Recent best practice findings for parallel performance




Resources . n

The HDF Group
 HDF5 home page: htip://hdfgroup.org/HDFS/
 HDF forum, webinars, YouTube channel, help@hdfgroup.org

 HDF5 Jira: https://jira.hdfgroup.org, GitHub issue tracker.
» Documentation: https://docs.hdfgroup.org/hdfS/develop/

* Online tutorials https://portal.ndfgroup.org/display/HDF 5/Introduction+to+Parallel[+HDF5

* In-person tutorials

« Super Computing Conference (MPI 10)
« National Laboratories (Argonne Training Program on Extreme-Scale Computing (ATPESC) )

* HDF5 repo: https://github.com/HDF Group/hdf5
| atest releases: https://portal.hdfgroup.org/display/support/Downloads

e HDF5 1.8.22
v

"« HDF5 1.10.8
& HDF5 1.13.1 (pre-production 1.14 release)

 HDF5 1.12.2
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Useful pre-tuned third-party alternatives -

N L71
The HDF Group

* Don't open the hood, consider,

* Alternatives to the C-API, Fine choices: h5py, rhdf5, HSCPP, HDFS.|l, etc.
* Third-party HDF5 based libraries (netCDF, CGNS)

* CGNS = Computational Fluid Dynamics (CFD) General Notation System

* An effort to standardize CFD input and output data, including:

» Grid (both structured and unstructured), flow solution
» Connectivity, boundary conditions, auxiliary information.

* Two parts:

* A standard format for recording the data
o Software that reads, writes, and modifies data in that format.

 An American Institute of Aeronautics and Astronautics Recommended Practice

cfd data standard

4 Shaping the Future of Aerospace

AIAA



https://www.h5py.org/
https://bioconductor.org/packages/release/bioc/html/rhdf5.html
http://h5cpp.org/
https://github.com/JuliaIO/HDF5.jl

Useful for monitoring HDF5 Performance N

The HDF Group
CGNS benchmark_hdf5, Summit (ORNL) MProcs=7056 ntimes=4
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Past Performance Best Practice Findings



Effects of Software/Hardware Changes L

The HDF Group

» Poor/Improved performance can be a result of FS changes
» Single shared file using MPI-IO performance degradation [Byna, NERSC].

Benchmark Performance over Time
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Effects of influencing object’s in the file layout o

The HDF Group

 H5Pset alignment — controls the alignment of file objects on addresses.
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Object Creation (Collective vs. Single Process) h.-..n""":
The HDF Group
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& CAUTION: Obiject Creation Ly
(Collective vs. Single Process) he HDF Group

* In sequential mode, HDFS5 allocates chunks incrementally, i.e., when data is
written to a chunk for the first time.

* Chunk is also initialized with the default or user-provided fill value.

* In the parallel case, chunks are always allocated when the dataset is created
(not incrementally).

 The more ranks there are, the more chunks need to be allocated and
initialized/written, resulting in a slowdown.
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A& CAUTION: Object Creation Ly
(SEISM-IO, Blue WaterS_NCSA) The HDF Group

& Set HDF5 to never fill chunks (H5Pset fill_time with H5D FILL TIME NEVER)
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Challenging HDF5 Use Cases L
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* |deally, HDF5 parallel performance should be comparable (or better) to raw
binary /0.

* |ssues with third-party libraries (netCDF, CGNS...) using HDF5:

* Can be metadata heavy due to the need to conform to a standard format.

* The standard’s format may dictate raw data output patterns.
 May lead to optimal write performance but poor read performance, or vice-versa.

» Mitigating performance issues

» Calls for HDF5 metadata can result in many small reads and writes.

* Implement new features in HDF5 to address metadata performance
* Collective metadata, using the core file driver for metadata creation, etc...

* Work with third-party libraries to use parallel file system-friendly HDF5 schemes.

12



Improve the performance of reading/writing H5S_all =

selected datasets The HDF Group

(1) New in HDF5 1.10.5

1000 ¢ ' ] ' ] ' ]
o |f: |
» All the processes are 100 | -
reading/writing the same data |
* And the dataset is less than 2GB 10} -
* Then g
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HDF5 Dataset I/0 L
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* [ssue large I/O requests
» At least as large as the file system block size

» Avoid datatype conversion©
» Use the same data type in the file as in memory

- Avoid dataspace conversion?
* One dimensional buffer in memory to two-dimensional array in the file

@ Can break collective operations; check what mode was used
HoPget _mpio_actual 10_mode, and why
H5Pget mpio no collective cause

14


https://support.hdfgroup.org/HDF5/doc/RM/RM_H5P.html
https://support.hdfgroup.org/HDF5/doc/RM/RM_H5P.html

LIrJe=

HDF5 Dataset — Storage Type i,

The HDF Group

» Use contiguous storage if no data will be added and compression is not used
« Data will not be cached by HDF5

» Use compact storage when working with small data (<64K)
« Data becomes part of HDF5 internal metadata and is cached (metadata cache)

* Avoid data duplication to reduce file sizes.

» Use links to point to datasets stored in the same or external HDF5 file
* Use VDS to point to data stored in other HDF5 datasets

15
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SCALING OPTIMIZATIONS The HOE Group
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HDF5 Dataset — Chunked Storage P
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» Chunking is required when using extendibility and/or compression and other filters
* /O is always performed on a whole chunk

» Understand how chunking cache works
https://portal.hdfgroup.org/display/HDF5/Chunking+in+HDFS and consider

* Do you access the same chunk often?
* What is the best chunk size (especially when using compression)?

17



https://portal.hdfgroup.org/display/HDF5/Chunking+in+HDF5

Write Metadata Collectively FL

The HDF Group

 Symptoms: Many users reported that H5Fclose() Is very slow and
doesn’t scale well on parallel file systems.

* Diagnosis: HDF5 metadata cache issues very small accesses (one
write per entry). We know that parallel file systems don’t do well with
small 1/0O accesses.

» Solution: Gather up all the entries of an epoch, create an MPI-derived
datatype, and issue a single collective MPI write.

Establishes 1/O mode property setting, collective or
independent, for metadata writes

H5P SET COLL METADATA WRITE

Retrieves |/O mode property setting for metadata

H5P GET COLL METADATA WRITE .
writes

Establishes |/O mode, collective or independent,

HoP SET ALL COLL METADATA OPS .
for metadata read operations

18 |HSP_GET ALL COLL METADATA OPS Retrieves |/O mode for metadata read operations



https://portal.hdfgroup.org/display/HDF5/H5P_SET_COLL_METADATA_WRITE
https://portal.hdfgroup.org/display/HDF5/H5P_GET_COLL_METADATA_WRITE
https://portal.hdfgroup.org/display/HDF5/H5P_SET_ALL_COLL_METADATA_OPS
https://portal.hdfgroup.org/display/HDF5/H5P_GET_ALL_COLL_METADATA_OPS

Closing a CGNS File ... =l

The HDF Group
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New General HDF5 Best Practices Effecting Parallel
Performance



HDF5 Fundamentals — A Simple Problem =hon
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* Writing multiple 2D array variables over time:

ACROSS P processes arranged in a R x C process grid
FOREACH step1.. S
FOREACH count1.. A
CREATE a double ARRAY of size [X,Y] | [R*X,C*Y] (Strong | Weak)
(WRITE | READ) the ARRAY (to | from) an HDF5 file

21




Fundamentals — Missing Information

* How are the array variables represented in HDF5?

o 2D, 3D, 4D datasets

* Are the extents known a priori?

« How are the dimensions ordered?
* Groups?

* What order is the data written, and is the data read the same way?

* What's the storage layout?
 How many physical files?
» Contiguous or chunked, etc.
 |s the data compressible?

* What's the file system or data store?
» Collective vs. independent MPI-IO

22
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Other Sources of Performance Variability N —
The HDF Group

Hardware
System configuration and activity of other users

HDF5 property lists
Nearly 180 APls
Controls storage properties for HDF5 objects
Controls in-flight HDF5 behavior

About 100 H5Pset * functions
<p;” ... " P1oo COMbinations!
.  How many are tested?
What does H5P DEFAULT mean?
(No, you can’t control that one)

What is the effect of using H5P_DEFAULT?

https://portal.hdfgroup.org/display/HDE5/Property +Lists

23



https://portal.hdfgroup.org/display/HDF5/Property+Lists

Back to the earlier example -- Application Model

The HDF Group

Good or bad news:

There are several different ways to handle the data in HDF5, for example:

Many 2D datasets or attributes (¢)
A few 3D datasets (create vors e )
A 4D dataset

There are many ways to use HDF5 properties (trste grove )
Chunking ?‘
Data alignment D

Metadata block size
Collective/Independent I/0

ldeally, performance would be more or less the same

(write 2D tile 1) (write 2D tile P)

HDF5 I/07 test explores the HDF5 parameter space l

1 https://github.com/HDFGroup/hdf5-iotest

24



https://github.com/HDFGroup/hdf5-iotest

Dataset Rank

L=

L/
The HDF Group

HDF5 Parameter Space
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VOLs can help eliminate performance variability

26
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12 ranks,



DAOS VOL Connector L
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« HDF5 VOL connector for I/O to Distributed
Asynchronous Object Storage (DAOS)

hitps://github.com/HDFGroup/vol-daos
» Set to be deployed at ANL.

* Minimal code changes needed to use, enabled via
environment variables or through HDF5 APIs.

 HDF5 tools are supported
* hddump, hdls, hadiff, hdrepack, h5copy, etc.

» Supports async |/O

27



https://github.com/HDFGroup/vol-daos

LN
VOLs can help eliminate performance variability The HDF Group

Total time (read & write) in the HDFspace set for ANL 144 ranks, with
no delay and one second delay for a compute phase, DAOS-VOL.
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Subfiling R
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» Subfiling iIs a compromise between file-per-process (fpp) and a single shared file

)

» Multiple files organized as a Software RAID-0 Implementation RAID 0O

* One metadata (.h5) file stitching the small files together

 Benefits

29

i.  Configurable “stripe-depth” and “stripe-set size” striping
ii.  Adefault “stripe-set” is created by using 1 file per node
iii. A default “stripe-depth” is 32MB

In the current implementation

Better use of parallel 1/O subsystem
Reduces the complexity of fpp

Reduced locking and contention issues to improve performance at larger processor counts over
ssf




Subfiling R

o o

30
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For Subfiling, the HDF5 content is separated into

two components:

/0 Concentrator 1. The Metadata — the metadata is embedded in
subfiles.

2. The RAW data — is written logically to a RAID-0

 Node-local Storage file and is spread over several individual files,

(optional) | each managed by an I/O concentrator.
VHDFS File Persisted to Disk The resulting collection can be read using Sub-
UYYYYYYYESSay | filing or eventually coalesced via a post-processing
- DlskArchltecture and Layout of Data on Disk | step into a single HDF5 file (h5fuse.sh).

/O Concentrators are implemented as independent threads attached to a normal HDF5 process.

. MPl is utilized for communicating between HDF5 processes and the set of I/O Concentrators.

Because of (b), applications need to use MPI_Init_thread with MPI_THREAD _MULTIPLE to
initialize the MPI library.




Subfiling P

The HDF Group

Initial Results y VPIC-10 (WRITE) MB/second

(hSbench — vpicio)
« Parallel runs on SUMMIT

show results from 256 to
16384 cores.

* The number of Subfiles
utilized ranges from 6 (for a
256 MPI rank application
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THANK YOU!

Questions & Comments?



