
Parallel I/O with HDF5 and
Performance Tuning Techniques

M. Scot Breitenfeld

2

Outline

• A brief overview of past general best practices for HDF5
• Recent best practice findings for parallel performance

3

Resources
• HDF5 home page: http://hdfgroup.org/HDF5/

• HDF forum, webinars, YouTube channel, help@hdfgroup.org
• HDF5 Jira: https://jira.hdfgroup.org, GitHub issue tracker.
• Documentation: https://docs.hdfgroup.org/hdf5/develop/

• Online tutorials https://portal.hdfgroup.org/display/HDF5/Introduction+to+Parallel+HDF5
• In-person tutorials

• Super Computing Conference (MPI IO)
• National Laboratories (Argonne Training Program on Extreme-Scale Computing (ATPESC))

• HDF5 repo: https://github.com/HDFGroup/hdf5
• Latest releases: https://portal.hdfgroup.org/display/support/Downloads

• HDF5 1.8.22
• HDF5 1.10.8
• HDF5 1.12.2
• HDF5 1.13.1 (pre-production 1.14 release)

http://hdfgroup.org/HDF5/
https://forum.hdfgroup.org/
https://www.youtube.com/channel/UCRhtsIZquL3r-zH-R-r9-tQ
mailto:help@hdfgroup.org
https://jira.hdfgroup.org/
https://docs.hdfgroup.org/hdf5/develop/
https://portal.hdfgroup.org/display/HDF5/Introduction+to+Parallel+HDF5
https://github.com/HDFGroup/hdf5
https://portal.hdfgroup.org/display/support/Downloads

4

• Don’t open the hood, consider,
• Alternatives to the C-API, Fine choices: h5py, rhdf5, H5CPP, HDF5.jl, etc.
• Third-party HDF5 based libraries (netCDF, CGNS)

• CGNS = Computational Fluid Dynamics (CFD) General Notation System
• An effort to standardize CFD input and output data, including:

• Grid (both structured and unstructured), flow solution
• Connectivity, boundary conditions, auxiliary information.

• Two parts:
• A standard format for recording the data
• Software that reads, writes, and modifies data in that format.

• An American Institute of Aeronautics and Astronautics Recommended Practice

Useful pre-tuned third-party alternatives

https://www.h5py.org/
https://bioconductor.org/packages/release/bioc/html/rhdf5.html
http://h5cpp.org/
https://github.com/JuliaIO/HDF5.jl

5

Useful for monitoring HDF5 Performance

5

 0

 20

 40

 60

 80

 100

 120

 140

1.8.7
1.8.8

1.8.9
1.8.10-patch1

1.8.11
1.8.12

1.8.13
1.8.14

1.8.15-patch1

1.8.16
1.8.17

1.8.18
1.8.19

1.8.20
1.8.21

1.8.22
1.8 1.10.0-patch1

1.10.1
1.10.3

1.10.4
1.10.5

1.10.6
1.10.7

1.10.8
1.10

1.12.0
1.12.1

1.12
1.13.0

1.13.1
develop

Ti
m

e (
s)

HDF5 version

CGNS benchmark_hdf5, Summit (ORNL) nprocs=7056,ntimes=4
nelem=8.4e10

2022-04-241.131.121.101.8

Past Performance Best Practice Findings

7

Effects of Software/Hardware Changes

• Poor/Improved performance can be a result of FS changes
• Single shared file using MPI-IO performance degradation [Byna, NERSC].

8

Effects of influencing object’s in the file layout

• H5Pset_alignment – controls the alignment of file objects on addresses.

VPIC, Summit, ORNL

9

Object Creation (Collective vs. Single Process)

10

CAUTION: Object Creation
(Collective vs. Single Process)

• In sequential mode, HDF5 allocates chunks incrementally, i.e., when data is
written to a chunk for the first time.
• Chunk is also initialized with the default or user-provided fill value.

• In the parallel case, chunks are always allocated when the dataset is created
(not incrementally).
• The more ranks there are, the more chunks need to be allocated and

initialized/written, resulting in a slowdown.

11

CAUTION: Object Creation
(SEISM-IO, Blue Waters—NCSA)

Set HDF5 to never fill chunks (H5Pset_fill_time with H5D_FILL_TIME_NEVER)

12

Challenging HDF5 Use Cases

• Ideally, HDF5 parallel performance should be comparable (or better) to raw
binary I/O.

• Issues with third-party libraries (netCDF, CGNS…) using HDF5:
• Can be metadata heavy due to the need to conform to a standard format.
• The standard’s format may dictate raw data output patterns.

• May lead to optimal write performance but poor read performance, or vice-versa.

• Mitigating performance issues
• Calls for HDF5 metadata can result in many small reads and writes.
• Implement new features in HDF5 to address metadata performance

• Collective metadata, using the core file driver for metadata creation, etc…
• Work with third-party libraries to use parallel file system-friendly HDF5 schemes.

12

13

Improve the performance of reading/writing H5S_all
selected datasets

(1) New in HDF5 1.10.5
• If:

• All the processes are
reading/writing the same data

• And the dataset is less than 2GB
• Then

• The lowest process id in the
communicator will read and
broadcast the data or write the
data.

(2) Use of compact storage, or
• For compact storage, this same

algorithm gets used.

14

HDF5 Dataset I/O

• Issue large I/O requests
• At least as large as the file system block size

• Avoid datatype conversion
• Use the same data type in the file as in memory

• Avoid dataspace conversion
• One dimensional buffer in memory to two-dimensional array in the file

Can break collective operations; check what mode was used
H5Pget_mpio_actual_io_mode, and why
H5Pget_mpio_no_collective_cause

https://support.hdfgroup.org/HDF5/doc/RM/RM_H5P.html
https://support.hdfgroup.org/HDF5/doc/RM/RM_H5P.html

15

HDF5 Dataset – Storage Type

• Use contiguous storage if no data will be added and compression is not used
• Data will not be cached by HDF5

• Use compact storage when working with small data (<64K)
• Data becomes part of HDF5 internal metadata and is cached (metadata cache)

• Avoid data duplication to reduce file sizes.
• Use links to point to datasets stored in the same or external HDF5 file
• Use VDS to point to data stored in other HDF5 datasets

16

SCALING OPTIMIZATIONS
Ti

m
e

(s
ec

.)

Greg Sjaardema, Sandia National Labs

ORIGINAL

MPI_Bcast

READ-PROC0-AND-BCAST
WITHIN APPLICATION

COMPACT STORAGE

FILE-PER-PROCESS

17

HDF5 Dataset – Chunked Storage

• Chunking is required when using extendibility and/or compression and other filters
• I/O is always performed on a whole chunk
• Understand how chunking cache works

https://portal.hdfgroup.org/display/HDF5/Chunking+in+HDF5 and consider
• Do you access the same chunk often?
• What is the best chunk size (especially when using compression)?

https://portal.hdfgroup.org/display/HDF5/Chunking+in+HDF5

18

Write Metadata Collectively
• Symptoms: Many users reported that H5Fclose() is very slow and

doesn’t scale well on parallel file systems.
• Diagnosis: HDF5 metadata cache issues very small accesses (one

write per entry). We know that parallel file systems don’t do well with
small I/O accesses.

• Solution: Gather up all the entries of an epoch, create an MPI-derived
datatype, and issue a single collective MPI write.

H5P_SET_COLL_METADATA_WRITE Establishes I/O mode property setting, collective or
independent, for metadata writes

H5P_GET_COLL_METADATA_WRITE Retrieves I/O mode property setting for metadata
writes

H5P_SET_ALL_COLL_METADATA_OPS Establishes I/O mode, collective or independent,
for metadata read operations

H5P_GET_ALL_COLL_METADATA_OPS Retrieves I/O mode for metadata read operations

https://portal.hdfgroup.org/display/HDF5/H5P_SET_COLL_METADATA_WRITE
https://portal.hdfgroup.org/display/HDF5/H5P_GET_COLL_METADATA_WRITE
https://portal.hdfgroup.org/display/HDF5/H5P_SET_ALL_COLL_METADATA_OPS
https://portal.hdfgroup.org/display/HDF5/H5P_GET_ALL_COLL_METADATA_OPS

19

Closing a CGNS File …

New General HDF5 Best Practices Effecting Parallel
Performance

21

HDF5 Fundamentals – A Simple Problem

• Writing multiple 2D array variables over time:

ACROSS P processes arranged in a R x C process grid
FOREACH step 1 .. S
FOREACH count 1 .. A

CREATE a double ARRAY of size [X,Y] | [R*X,C*Y] (Strong | Weak)
(WRITE | READ) the ARRAY (to | from) an HDF5 file

22

Fundamentals – Missing Information

• How are the array variables represented in HDF5?
• 2D, 3D, 4D datasets
• Are the extents known a priori?
• How are the dimensions ordered?
• Groups?

• What order is the data written, and is the data read the same way?
• What’s the storage layout?

• How many physical files?
• Contiguous or chunked, etc.
• Is the data compressible?

• What’s the file system or data store?
• Collective vs. independent MPI-IO

23

Other Sources of Performance Variability

● Hardware
● System configuration and activity of other users
● HDF5 property lists

○ Nearly 180 APIs
○ Controls storage properties for HDF5 objects
○ Controls in-flight HDF5 behavior
○ About 100 H5Pset_* functions

■ ≤ p1 * … * p100 combinations!
■ How many are tested?

○ What does H5P_DEFAULT mean?
■ (No, you can’t control that one)

○ What is the effect of using H5P_DEFAULT?

https://portal.hdfgroup.org/display/HDF5/Property+Lists

https://portal.hdfgroup.org/display/HDF5/Property+Lists

24

Back to the earlier example -- Application Model

● Good or bad news:
○ There are several different ways to handle the data in HDF5, for example:

■ Many 2D datasets or attributes
■ A few 3D datasets
■ A 4D dataset

○ There are many ways to use HDF5 properties
■ Chunking
■ Data alignment
■ Metadata block size
■ Collective/Independent I/O

○ Ideally, performance would be more or less the same
○ HDF5 I/O1 test explores the HDF5 parameter space

1 https://github.com/HDFGroup/hdf5-iotest

https://github.com/HDFGroup/hdf5-iotest

25

HDF5 Parameter Space

26

VOLs can help eliminate performance variability

 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190
 0.1

 1

 10

 100

 1000RANK 2
RANK 3
RANK 4

TIME
STEP

CHUNKED
CONTIGUOUS

FILL--FALSE
FILL--TRUE

DEF. ALIGN
ALIGN

DEF. METADATA
METADATA

LATEST
EARLIEST

COLLECTIVE
INDEPENDENT

NATIVE-VOL

LOG-VOL

Av
er

ag
e T

ot
al

 T
im

e (
s)

Total time (read & write) in the HDFspace set for Cori on 512 ranks,
LOG-BASED VOL

27

DAOS VOL Connector
• HDF5 VOL connector for I/O to Distributed

Asynchronous Object Storage (DAOS)

• Set to be deployed at ANL.
• Minimal code changes needed to use, enabled via

environment variables or through HDF5 APIs.
• HDF5 tools are supported

• h5dump, h5ls, h5diff, h5repack, h5copy, etc.
• Supports async I/O

https://github.com/HDFGroup/vol-daos

https://github.com/HDFGroup/vol-daos

28

VOLs can help eliminate performance variability

Total time (read & write) in the HDFspace set for ANL 144 ranks, with
no delay and one second delay for a compute phase, DAOS-VOL.

RANK 2
RANK 3
RANK 4

TIME
STEP

CHUNKED
CONTIGUOUS

FILL--FALSE
FILL--TRUE

DEF. ALIGN
ALIGN

DEF. METADATA
METADATA

LATEST
EARLIEST

COLLECTIVE
INDEPENDENT

Av
er

ag
e T

ot
al

 T
im

e (
s)

sync, delay=0
async, delay=0
sync, delay=1s

async, delay=1s

 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

29

Subfiling
• Subfiling is a compromise between file-per-process (fpp) and a single shared file

(ssf)
• Multiple files organized as a Software RAID-0 Implementation

i. Configurable “stripe-depth” and “stripe-set size”
ii. A default “stripe-set” is created by using 1 file per node
iii. A default “stripe-depth” is 32MB

• One metadata (.h5) file stitching the small files together
in the current implementation

• Benefits
• Better use of parallel I/O subsystem
• Reduces the complexity of fpp
• Reduced locking and contention issues to improve performance at larger processor counts over
ssf

30

Subfiling

a. I/O Concentrators are implemented as independent threads attached to a normal HDF5 process.
b. MPI is utilized for communicating between HDF5 processes and the set of I/O Concentrators.
c. Because of (b), applications need to use MPI_Init_thread with MPI_THREAD_MULTIPLE to

initialize the MPI library.

For Subfiling, the HDF5 content is separated into
two components:

1. The Metadata – the metadata is embedded in
subfiles.

2. The RAW data – is written logically to a RAID-0
file and is spread over several individual files,
each managed by an I/O concentrator.

The resulting collection can be read using Sub-
filing or eventually coalesced via a post-processing
step into a single HDF5 file (h5fuse.sh).

31

Subfiling

Initial Results
(h5bench – vpicio)
• Parallel runs on SUMMIT

show results from 256 to
16384 cores.

• The number of Subfiles
utilized ranges from 6 (for a
256 MPI rank application
run) to 391 (for the 16K
MPI rank application),
based on 42 cores per
node.

THANK YOU!
Questions & Comments?

