Parallel /0 with HDF5 and
Performance Tuning Techniques

] Sl

I L

The HDF Grou
P M. Scot Breitenfeld

Outline LT

The HDF Group

* A brief overview of past general best practices for HDF5
» Recent best practice findings for parallel performance

Resources . n

The HDF Group
 HDF5 home page: htip://hdfgroup.org/HDFS/
 HDF forum, webinars, YouTube channel, help@hdfgroup.org

 HDF5 Jira: https://jira.hdfgroup.org, GitHub issue tracker.
» Documentation: https://docs.hdfgroup.org/hdfS/develop/

* Online tutorials https://portal.ndfgroup.org/display/HDF 5/Introduction+to+Parallel[+HDF5

* In-person tutorials

« Super Computing Conference (MPI 10)
« National Laboratories (Argonne Training Program on Extreme-Scale Computing (ATPESC))

* HDF5 repo: https://github.com/HDF Group/hdf5
| atest releases: https://portal.hdfgroup.org/display/support/Downloads

e HDF5 1.8.22
v

"« HDF5 1.10.8
& HDF5 1.13.1 (pre-production 1.14 release)

 HDF5 1.12.2

/

http://hdfgroup.org/HDF5/
https://forum.hdfgroup.org/
https://www.youtube.com/channel/UCRhtsIZquL3r-zH-R-r9-tQ
mailto:help@hdfgroup.org
https://jira.hdfgroup.org/
https://docs.hdfgroup.org/hdf5/develop/
https://portal.hdfgroup.org/display/HDF5/Introduction+to+Parallel+HDF5
https://github.com/HDFGroup/hdf5
https://portal.hdfgroup.org/display/support/Downloads

Useful pre-tuned third-party alternatives -

N L71
The HDF Group

* Don't open the hood, consider,

* Alternatives to the C-API, Fine choices: h5py, rhdf5, HSCPP, HDFS.|l, etc.
* Third-party HDF5 based libraries (netCDF, CGNS)

* CGNS = Computational Fluid Dynamics (CFD) General Notation System

* An effort to standardize CFD input and output data, including:

» Grid (both structured and unstructured), flow solution
» Connectivity, boundary conditions, auxiliary information.

* Two parts:

* A standard format for recording the data
o Software that reads, writes, and modifies data in that format.

 An American Institute of Aeronautics and Astronautics Recommended Practice

cfd data standard

4 Shaping the Future of Aerospace

AIAA

https://www.h5py.org/
https://bioconductor.org/packages/release/bioc/html/rhdf5.html
http://h5cpp.org/
https://github.com/JuliaIO/HDF5.jl

Useful for monitoring HDF5 Performance N

The HDF Group
CGNS benchmark_hdf5, Summit (ORNL) MProcs=7056 ntimes=4
140
120 7
a
100 - 7
80 [7
&
D
E
-
60 -
40 |- -
20 7
0
Co Lo 4o Lo 4o Lo 4o Lo Lo Lo Lo Lo Lp Lo Lp Lo 4 I 7, 4, L 7, < %
CON P VIS P T L FOL O JO P FC PO JA SIS SN "y “lp iy Cay Cay ay Cay Cay Y R 05 &,
CE O g 0 \/6/)/&9 N2V Y s G ey Gy e T e <, Yo s “%
Q, a,, a,, »
“ K “
7 1.8 7 7 1.10 1.12 1.13 [2022-04-24

9| HDFS5 version

Past Performance Best Practice Findings

Effects of Software/Hardware Changes L

The HDF Group

» Poor/Improved performance can be a result of FS changes
» Single shared file using MPI-IO performance degradation [Byna, NERSC].

Benchmark Performance over Time

35k

30k

25k

20k

MB/s

-®- Value

15k

10k

5k

Ok
Jan '17 May '17 Sep '17 Jan '18 May '18

Y4 Date

Effects of influencing object’s in the file layout o

The HDF Group

 H5Pset alignment — controls the alignment of file objects on addresses.

500 L T : 0.05
B 19,Q2 -- independant (no H5Pset_alignment)
. 19,Q2 -- collective —
=3 19,Q3 -- independant (no H5Pset_alignment) s
=3 19,Q3 -- collective 0.045
/3 20,Q2 -- independant (no H5Pset_alignment) E‘J
== 20,Q2 -- collective .
40(| T 20,Q2 -- independant (H5Pset_alignment) 'ﬁ 0.04
*J
&
B 0035
2 P
% 300 - '; 0.03
~ -
o =
b @
E N 0.025
N
S o
@ = 002
=200 =
= =
= o
g 0015
b}
o
E
100 - - 0.01
S
3(3005
Il Il I I w 0 l l l
0 ' -) ' 1764 3528 7056 14112 28224

1764 3528 7056 14112 28224 56448

Number of Processes
Number of processes

VPIC, Summit, ORNL

Object Creation (Collective vs. Single Process) h.-..n""":
The HDF Group
8 |

| | | | | | | | | |
——e—1 Collective Object Creation | r r r ' T
+—e— One Processes Object Creation |

Time (seconds)
N

0 | | | | | | | | | | |
8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Number of Processes

& CAUTION: Obiject Creation Ly
(Collective vs. Single Process) he HDF Group

* In sequential mode, HDFS5 allocates chunks incrementally, i.e., when data is
written to a chunk for the first time.

* Chunk is also initialized with the default or user-provided fill value.

* In the parallel case, chunks are always allocated when the dataset is created
(not incrementally).

 The more ranks there are, the more chunks need to be allocated and
initialized/written, resulting in a slowdown.

10

A& CAUTION: Object Creation Ly
(SEISM-IO, Blue WaterS_NCSA) The HDF Group

& Set HDF5 to never fill chunks (H5Pset fill_time with H5D FILL TIME NEVER)

700

600

500

400

Runtime (s)

300

200

100

16384 8192 4096 2048 1024 512 256 128 64

11 i Iwrite_original WM open_original ==@==open_neverfill ==@==\rite neverfill

LIrJe=

Challenging HDF5 Use Cases L

The HDF Group

* |deally, HDF5 parallel performance should be comparable (or better) to raw
binary /0.

* |ssues with third-party libraries (netCDF, CGNS...) using HDF5:

* Can be metadata heavy due to the need to conform to a standard format.

* The standard’s format may dictate raw data output patterns.
 May lead to optimal write performance but poor read performance, or vice-versa.

» Mitigating performance issues

» Calls for HDF5 metadata can result in many small reads and writes.

* Implement new features in HDF5 to address metadata performance
* Collective metadata, using the core file driver for metadata creation, etc...

* Work with third-party libraries to use parallel file system-friendly HDF5 schemes.

12

Improve the performance of reading/writing H5S_all =

selected datasets The HDF Group

(1) New in HDF5 1.10.5

1000 ¢ '] '] ']
o |f: |
» All the processes are 100 | -
reading/writing the same data |
* And the dataset is less than 2GB 10} -
* Then g
* The lowest process id in the : . |)
communicator will read and - - B '!!!;"‘}" ~—e—f ALL READ, NPROCS=1536 :
broadcast the data or write the o1y P 1 ALLREAD NPROCS-3072
data. e " ALLREAD NPROCS=6144 -
001 k£,at*" - - READ-PROCO-BCAST, NPROCS=6144 |
(2) Use of compact storage, or ‘—‘ -~ READ-PROCO-BCAST, NPROCS=12288 -
* For compact storage, this same o0 b
a|gorithm gets used. 1 10 100 1000 10000 100000

Read Size (MiB)

13

HDF5 Dataset I/0 L

The HDF Group

* [ssue large I/O requests
» At least as large as the file system block size

» Avoid datatype conversion©
» Use the same data type in the file as in memory

- Avoid dataspace conversion?
* One dimensional buffer in memory to two-dimensional array in the file

@ Can break collective operations; check what mode was used
HoPget _mpio_actual 10_mode, and why
H5Pget mpio no collective cause

14

https://support.hdfgroup.org/HDF5/doc/RM/RM_H5P.html
https://support.hdfgroup.org/HDF5/doc/RM/RM_H5P.html

LIrJe=

HDF5 Dataset — Storage Type i,

The HDF Group

» Use contiguous storage if no data will be added and compression is not used
« Data will not be cached by HDF5

» Use compact storage when working with small data (<64K)
« Data becomes part of HDF5 internal metadata and is cached (metadata cache)

* Avoid data duplication to reduce file sizes.

» Use links to point to datasets stored in the same or external HDF5 file
* Use VDS to point to data stored in other HDF5 datasets

15

L=

SCALING OPTIMIZATIONS The HOE Group

ORIGINAL
100009 —4—Baseline Chart Area /

—8—Add MetaData BCast
10000 —-Improved N->1

—a—File-per-Processor (fpp) o READ-PROCO-AND-BCAST

1000 —+—=MPI_BCast()

oo T WITHIN APPLICATION
10 / Minute

M\ COMPACT STORAGE

second [-]| E-PER-PROCESS

T s R — MPI_Bcast

o J —_—
0.001 MPI Ranks
32 64 128 256 512 1,024 2,048 4,096 8,192 16,384 32,768

Greg Sjaardema, Sandia National Labs CG N s

-h
o

Time (sec.)

Execution Time (seconds)
o
— -—

16

HDF5 Dataset — Chunked Storage P

The HDF Group

» Chunking is required when using extendibility and/or compression and other filters
* /O is always performed on a whole chunk

» Understand how chunking cache works
https://portal.hdfgroup.org/display/HDF5/Chunking+in+HDFS and consider

* Do you access the same chunk often?
* What is the best chunk size (especially when using compression)?

17

https://portal.hdfgroup.org/display/HDF5/Chunking+in+HDF5

Write Metadata Collectively FL

The HDF Group

 Symptoms: Many users reported that H5Fclose() Is very slow and
doesn’t scale well on parallel file systems.

* Diagnosis: HDF5 metadata cache issues very small accesses (one
write per entry). We know that parallel file systems don’t do well with
small 1/0O accesses.

» Solution: Gather up all the entries of an epoch, create an MPI-derived
datatype, and issue a single collective MPI write.

Establishes 1/O mode property setting, collective or
independent, for metadata writes

H5P SET COLL METADATA WRITE

Retrieves |/O mode property setting for metadata

H5P GET COLL METADATA WRITE .
writes

Establishes |/O mode, collective or independent,

HoP SET ALL COLL METADATA OPS .
for metadata read operations

18 |HSP_GET ALL COLL METADATA OPS Retrieves |/O mode for metadata read operations

https://portal.hdfgroup.org/display/HDF5/H5P_SET_COLL_METADATA_WRITE
https://portal.hdfgroup.org/display/HDF5/H5P_GET_COLL_METADATA_WRITE
https://portal.hdfgroup.org/display/HDF5/H5P_SET_ALL_COLL_METADATA_OPS
https://portal.hdfgroup.org/display/HDF5/H5P_GET_ALL_COLL_METADATA_OPS

Closing a CGNS File ... =l

The HDF Group

CGNS Close
Hopper - Lustre
160
140

oo /

g 80 / == Patched
60 / —o—Orig
140
20 /

0 H“"—z/ﬁ‘t’ ——h——
128 512 1024 2048 4096 8192 12284 16384
Number of Ranks
CGNS Close
Cetus - GPFS
45

40 /
35 /
30

> //
20 - Patched

> :
15 —o—0rig
10 ‘/”"

; v
0 -Mm I S——— N

128 512 1024 2048 4096 8192 12284 16384
Number of Ranks

Seconds

19

New General HDF5 Best Practices Effecting Parallel
Performance

HDF5 Fundamentals — A Simple Problem =hon

The HDF Group

* Writing multiple 2D array variables over time:

ACROSS P processes arranged in a R x C process grid
FOREACH step1.. S
FOREACH count1.. A
CREATE a double ARRAY of size [X,Y] | [R*X,C*Y] (Strong | Weak)
(WRITE | READ) the ARRAY (to | from) an HDF5 file

21

Fundamentals — Missing Information

* How are the array variables represented in HDF5?

o 2D, 3D, 4D datasets

* Are the extents known a priori?

« How are the dimensions ordered?
* Groups?

* What order is the data written, and is the data read the same way?

* What's the storage layout?
 How many physical files?
» Contiguous or chunked, etc.
 |s the data compressible?

* What's the file system or data store?
» Collective vs. independent MPI-IO

22

LIrJe=

N L71
The HDF Group

Other Sources of Performance Variability N —
The HDF Group

Hardware
System configuration and activity of other users

HDF5 property lists
Nearly 180 APls
Controls storage properties for HDF5 objects
Controls in-flight HDF5 behavior

About 100 H5Pset * functions
<p;” ... " P1oo COMbinations!
. How many are tested?
What does H5P DEFAULT mean?
(No, you can’t control that one)

What is the effect of using H5P_DEFAULT?

https://portal.hdfgroup.org/display/HDE5/Property +Lists

23

https://portal.hdfgroup.org/display/HDF5/Property+Lists

Back to the earlier example -- Application Model

The HDF Group

Good or bad news:

There are several different ways to handle the data in HDF5, for example:

Many 2D datasets or attributes (¢)
A few 3D datasets (create vors e)
A 4D dataset

There are many ways to use HDF5 properties (trste grove)
Chunking ?‘
Data alignment D

Metadata block size
Collective/Independent I/0

ldeally, performance would be more or less the same

(write 2D tile 1) (write 2D tile P)

HDF5 I/07 test explores the HDF5 parameter space l

1 https://github.com/HDFGroup/hdf5-iotest

24

https://github.com/HDFGroup/hdf5-iotest

Dataset Rank

L=

L/
The HDF Group

HDF5 Parameter Space

juspuadapul
9A1}99||09
independent
independent

earliest

1s9je|

Slowest Dimension

9LZLLLO)

ent
'mdepe“d
)
u

ndependent

—_
independent lm
[E= St L t
lateSt collective o ra g e ay o u
— -]

collective o independent
_ earliest
independent m
independent

/ i"depende,,t

indepe, dors

ende? e

=~ __ Initialization with Fill Values

indeP

\X
nt
‘“\de"‘e“de

91ZLLL9}

independent
independent

indepengen

9AI309]|0D
juepuadapul

25

VOLs can help eliminate performance variability

26

Total time (read & write) in the HDFspace set for Cori on 5

L OG-BASED VOL

p—
()

0.1

—
90]
N
D)
£
=
e
<
S
=
D)
&0
<
3]
>
<

LIrJe=

N L71
The HDF Group

12 ranks,

DAOS VOL Connector L

The HDF Group

« HDF5 VOL connector for I/O to Distributed
Asynchronous Object Storage (DAOS)

hitps://github.com/HDFGroup/vol-daos
» Set to be deployed at ANL.

* Minimal code changes needed to use, enabled via
environment variables or through HDF5 APIs.

 HDF5 tools are supported
* hddump, hdls, hadiff, hdrepack, h5copy, etc.

» Supports async |/O

27

https://github.com/HDFGroup/vol-daos

LN
VOLs can help eliminate performance variability The HDF Group

Total time (read & write) in the HDFspace set for ANL 144 ranks, with
no delay and one second delay for a compute phase, DAOS-VOL.

28

Subfiling R

The HDF Group

» Subfiling iIs a compromise between file-per-process (fpp) and a single shared file

)

» Multiple files organized as a Software RAID-0 Implementation RAID 0O

* One metadata (.h5) file stitching the small files together

 Benefits

29

i. Configurable “stripe-depth” and “stripe-set size” striping
ii. Adefault “stripe-set” is created by using 1 file per node
iii. A default “stripe-depth” is 32MB

In the current implementation

Better use of parallel 1/O subsystem
Reduces the complexity of fpp

Reduced locking and contention issues to improve performance at larger processor counts over
ssf

Subfiling R

o o

30

The HDF Group
For Subfiling, the HDF5 content is separated into

two components:

/0 Concentrator 1. The Metadata — the metadata is embedded in
subfiles.

2. The RAW data — is written logically to a RAID-0

 Node-local Storage file and is spread over several individual files,

(optional) | each managed by an I/O concentrator.
VHDFS File Persisted to Disk The resulting collection can be read using Sub-
UYYYYYYYESSay | filing or eventually coalesced via a post-processing
- DlskArchltecture and Layout of Data on Disk | step into a single HDF5 file (h5fuse.sh).

/O Concentrators are implemented as independent threads attached to a normal HDF5 process.

. MPl is utilized for communicating between HDF5 processes and the set of I/O Concentrators.

Because of (b), applications need to use MPI_Init_thread with MPI_THREAD _MULTIPLE to
initialize the MPI library.

Subfiling P

The HDF Group

Initial Results y VPIC-10 (WRITE) MB/second

(hSbench — vpicio)
« Parallel runs on SUMMIT

show results from 256 to
16384 cores.

* The number of Subfiles
utilized ranges from 6 (for a
256 MPI rank application
run) to 391 (for the 16K
MPI rank application), "
based on 42 cores per ! X i
N Od e. 512 1024 2048 4096

NUMBER OF CORES

600000
HDF5

SUBFILING
500000

400000

300000

200000

)
4
o)
O
L
&
B
s0)
e
L
-
=
S
Q
2
g
0
b
=
oc
S

31

THANK YOU!

Questions & Comments?

