BD5: an open data format for representing quantitative biological dynamics data

Koji Kyoda¹, Kenneth H.L. Ho², Hiroya Itoga¹, Yukako Tohsato³, Shuichi Onami¹
¹RIKEN BDR, ²Francis Crick Institute, ³Ritsumeikan University
Bioimage informatics

- Live-cell imaging can capture spatiotemporal dynamics of biological phenomena.
- Using image analysis, (x, y, z, t, c) data can be obtained from microscopy images.

(Keller et al. 2008)
Quantitative biological dynamics data

Caenorhabditis elegans (Bao et al., 2006)

Caenorhabditis elegans (Kyoda et al., 2013)

Drosophila melanogaster (Keller et al., 2010)

Zebrafish (Keller et al., 2008)

HeLa cell (Held et al., 2010)

Caenorhabditis elegans (Yemini et al., 2013)
Problem

- Research groups used different data formats.
- It is often difficult to reuse their data because of:
 - intricate data structure
 - the lack of detailed explanations

(Kyoda et al. 2013)

(Bao et al. 2006)

(Keller et al. 2008)

Text file

Separated text files

Matlab file
Open unified data formats

• Allowing
 • Data analysis and comparison
 • Tool development and its evaluation

Data providers

All tools can be used for data analysis.

Open unified formats

All data can be used for tool evaluation.

Tool developers
BDML: Biological Dynamics Markup Language

• An open unified format for representing quantitative data of biological dynamics

Kyoda et al. (2015) Bioinformatics
Biological dynamics described in BDML

- Data ranging from molecules to organisms
BD5

- HDF5-based data format for representing quantitative biological dynamics data

Kyoda et al. (2020) PLoS One
Example

(Bao et al., 2006)
Fast data access

- Compared with BDML, BD5 enables fast access to quantitative data owing to random access to the HDF5-based file.
File size reduction

- BD5 enables fast transfer of large quantitative data because the file size is dramatically reduced.
Bioimaging data format

• Next generation file format for bioimaging data
 • ome-zarr is a zarr-based format for storing bioimaging data.

(Moore et al., Nat. Methods, 2021)
BD-zarr

- Dynamics data is stored in AnnData (https://anndata.readthedocs.io)
 - Store coordinates information of biological objects in X array
 - Store features information as separate obs array
 - Store tracking information as separate $obsp$ array
Example

- Early worm embryogenesis data (Kyoda et al., 2020)

```
wt-N2-081015-01
|--- 0  image data |
|    |--- t |
|    |--- c |
|    |--- z |
|    |--- y |
|--- labels |
|    |--- 0  Pixel-based ROI data | |
|    |    |--- t |
|    |--- ... |
|--- dyn  Dynamics data |
|    |--- X |
|    |--- obs |
|--- obsp  tracking data |

X position data

<table>
<thead>
<tr>
<th>t</th>
<th>z</th>
<th>y</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.0</td>
<td>39.922649</td>
<td>109.316254</td>
</tr>
<tr>
<td>1</td>
<td>2.0</td>
<td>39.498207</td>
<td>113.885712</td>
</tr>
<tr>
<td>2</td>
<td>3.0</td>
<td>39.999203</td>
<td>111.549751</td>
</tr>
<tr>
<td>3</td>
<td>4.0</td>
<td>40.121613</td>
<td>112.833496</td>
</tr>
<tr>
<td>4</td>
<td>5.0</td>
<td>42.206738</td>
<td>115.653198</td>
</tr>
</tbody>
</table>

obs feature data

<table>
<thead>
<tr>
<th>id</th>
<th>entity</th>
<th>name</th>
<th>sphericity</th>
<th>volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1000</td>
<td>P0</td>
<td>0.837884</td>
<td>76238.3</td>
</tr>
<tr>
<td>1</td>
<td>2000</td>
<td>P0</td>
<td>0.811657</td>
<td>88108.6</td>
</tr>
<tr>
<td>2</td>
<td>3000</td>
<td>P0</td>
<td>0.854491</td>
<td>110026.0</td>
</tr>
<tr>
<td>3</td>
<td>4000</td>
<td>P0</td>
<td>0.771704</td>
<td>107802.0</td>
</tr>
<tr>
<td>4</td>
<td>5000</td>
<td>P0</td>
<td>0.815484</td>
<td>138333.0</td>
</tr>
</tbody>
</table>

obsp tracking data

array([[0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       ...
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0]], dtype=int8)
```
Visualization of BD-zarr data

- with napari image viewer (https://napari.org/)
Data sharing of bioimaging data

- SSBD:database (https://ssbd.riken.jp) stores and shares quantitative data and image data of biological dynamics with rich meta data.
Summary

• We have developed BDML/BD5 based on XML/HDF5 for representing quantitative data of biological dynamics.
• Compared with BDML, the BD5 format has two advantages:
 • faster access and retrieval of quantitative data
 • Smaller file size, faster transfer of files in large datasets
• Following the current development in the bioimaging community, we are working on developing a Zarr-based format that are functionally compatible with BD5, HDF5-based format.
Acknowledgement

• RIKEN OLSP (Funding)

• Norio KOBAYASHI (RIKEN R-IH)

• Hideyuki Jitsumoto (RIKEN R-IH)

• Information Systems Division

• Bioimaging Community
 • Josh Moore (University of Dundee)
 • Kevin Yamauchi (ETH Zürich)

• Special acknowledgement to EMBL-EBI’s Embassy Cloud and the BioImage Archive for providing valuable S3 storage and support for this project.