
HDF5 ⬌ Zarr
2022 European HDF5 Users Group Meeting

Aleksandar Jelenak

2

Outline

• About Zarr
• Zarr API ➔ HDF5 data
• HDF5 API ➔ Zarr data

3

Zarr Overview

• Fairly recent N-dimensional array storage schema (~2016).
• Supports the Holy Grail of the array storage features: hierarchies

(groups), chunking, chunk compression.
• Reference implementation as a Python package.
• Multiprocess and multithread read/write operations in Python

implementation.
• Backend storage can be any system with a key-value interface: file

system, cloud object store, key-value database, in-memory associative
array data structure, ZIP archive, etc.
• No single file format yet. (Not an objective.)

4

Zarr Schema

• Every Zarr object has a unique ASCII key.
• The value of every Zarr key is a byte sequence.
• Zarr schema metadata are easily understandable JSON objects.
• NumPy dtype string format describes Zarr array datatypes.
• Only one chunk compressor allowed, but multiple chunk filters. On write,

filters are executed first, in the order of definition, then the compressor.
The order is reversed on read.
• Chunk keys contain chunk’s logical array offset: The “first” chunk

element’s array indices divided by the chunk shape.
• Zarr attributes are stored as key-value pairs in a separate JSON object.

5

Interpretation of Zarr Keys

Key Interpretation
foo/bar/.zgroup “foo” and “foo/bar” are groups
foo/bar/.zarray “foo” is a group; “foo/bar” is an array
foo/.zattrs JSON object with the “foo” Zarr object’s attributes
foo/bar/0.0.0 First “foo/bar” array’s chunk (it’s 3D)
foo/bar/2.1.4 “foo/bar” chunk with first element [20, 20, 120] if chunk

shape (10, 20, 30)
foo/barr/2/1/4 Same as above and allowed by the Zarr spec. (Never

seen it used.) Allows to establish (sub-)chunk nesting.

Zarr API ➜ HDF5 Data

7

Proof of Concept

• In early 2020, the U.S. Geological Survey provided a small grant to
explore how HDF5 file data could be read using the zarr Python
package.
• The result was a new type of Zarr metadata JSON object: .zchunkstore.
• Its content provides the mapping of Zarr chunk keys of HDF5 dataset

chunks to their HDF5 file location (offset and size).
• The performance of this approach equaled the native Zarr store for the

same data and storage settings.

https://tinyurl.com/bdfd3r8a

8

kerchunk

• The .zchunkstore approach can be applied to many other data formats.
• Because of its usefulness, it is now a separate Python package called

kerchunk. Part of the fsspec Python project.
• Docs: https://fsspec.github.io/kerchunk/
• Repo: https://github.com/fsspec/kerchunk
• .zchunkstore concept became ReferenceFileSystem.
• Developed and maintained by the Zarr community.
• This package also supports reading from several other data formats

(GRIB2, TIFF, CSV, Parquet).

https://fsspec.github.io/kerchunk/
https://github.com/fsspec/kerchunk

HDF5 API ➜ Zarr Data

10

Connecting HDF5 API and Zarr Data

• Current Zarr represents a subset of HDF5 features.
• Zarr storage schema is conceptually equivalent to Highly Scalable Data

Service (HSDS) schema.
• HDF5 API access to Zarr data is based on HSDS.
• Only Zarr data in AWS S3.
• Proof of concept.
• Also applied to the netCDF-3 and TIFF file formats.

11

Implementation

• Using special HSDS schema chunking layout:
H5D_CHUNKED_REF_INDIRECT.
• This chunking layout is not supported by the HDF5 library.
• Developed to enable HSDS access to chunks in HDF5 files in object stores.
• Chunk information for one Zarr array is stored as an anonymous HDF5

compound dataset.
• The compound datatype has 3 fields for: byte offset (always 0), chunk object

size, and chunk object URI.
• The HDF5 dataset representing the Zarr array has the
H5D_CHUNKED_REF_INDIRECT layout and its value points to the
anonymous HDF5 dataset with chunk location information.

12

HDF5 dataset with chunk info

Name : /zeta
Type : zarr.core.Array
Data type : float64
Shape : (720, 9228245)
Chunk shape : (10, 141973)
Compressor : Zlib(level=6)
No. bytes : 53154691200 (49.5G)
Chunks initialized : 4680/4680

Type : h5pyd.Dataset
Data type : compound
Shape : (72, 65)

Value:
[[(0, 1949049, 's3://hdf5-zarr/adcirc_01d.zarr/zeta/0.0')
(0, 2911533, 's3://hdf5-zarr/adcirc_01d.zarr/zeta/0.1')
(0, 2506163, 's3://hdf5-zarr/adcirc_01d.zarr/zeta/0.2') ...
(0, 4344724, 's3://hdf5-zarr/adcirc_01d.zarr/zeta/0.62')
(0, 5696617, 's3://hdf5-zarr/adcirc_01d.zarr/zeta/0.63')
(0, 4275725, 's3://hdf5-zarr/adcirc_01d.zarr/zeta/0.64')]

12

Example Translation

Zarr array

13

Known Limitations

Zarr➔ HDF5:
• Any HDF5 datatype that NumPy does not support.
• HDF5 data of variable-length datatype and compact datasets must be stored

directly in the ReferenceFileSystem JSON.
• Advanced HDF5 features: object/region references, virtual dataset; anything

that relies on some kind of file system access encoded directly in HDF5 files.

Zarr/HDF5:
• Use of unsupported compressors or filters.
• Processing effort to produce ReferenceFileSystem from HDF5 files or

translate that JSON to HSDS JSON.

THANK YOU!
ajelenak@hdfgroup.org
info@hdfgroup.org

14

