

rhdf5: HDF5 in the Bioconductor ecosystem

Mike L. Smith

- Statistical programming language & environment
- Great for interactive data exploration & rapid prototyping

> plot(1:10)
> mean(1:10)

[1] 5.5

- 10,000s of addon "packages"
 - CRAN, Github, etc
 - Cover a huge range of topics and application areas
 - Easy to install (most of the time)

- Additional R package repository with specific focus on biological research
- Has more / different rules than CRAN!
 - intention is to make better software & improve user experience
 - package review, minimum documentation requirements, daily CI testing, ...
- Strong emphasis on code reuse and modularisation within the ecosystem
 - Core infrastructure implemented once and used by everyone
 - e.g. reading specific file types, classes representing common data types
- HDF5 falls into this category

rhdf5 package

Bernd Fischer

Rhdf5lib

- Distributes static HDF5 library (currently 1.10.6)
- Ensures consistent version for users
- Ensures consistent installation instructions and toolchain
- Compiles on Linux and Mac, pre-compiled for Windows

rhdf5filters

- Distributes several dynamic filters
 - o bzip2
 - o Izf
 - o blosc
 - blosclz, lz4, lz4hc, snappy, zstd, zlib
- Sets HDF5_PLUGIN_PATH environment variable in R session
- Can be used by external programs too

rhdf5

- Provides "high" and "low" level interfaces with C-API
- Reasonable coverage at "low level" with H5X() functions
 - Mapping to C interface
- "High level" functions for common operations h5x()
 - Wrappers with default choices made

rhdf5 - C-API mapping


```
fid <- H5Fcreate( name = "/my/special/file.h5" )
sid <- H5Screate_simple( c(2,1) )
did <- H5Dcreate( fid, "A", "H5T_STD_I32LE", sid )
H5Dwrite(did, 1L:2L, h5spaceMem = sid, h5spaceFile = sid)
H5Dclose( did )
H5Sclose( sid )
H5Fclose( fid )</pre>
```

rhdf5 - wrapper functions

Example use case: Single-cell sequencing

It's all about a counts matrix

Single-cell RNA-Seq (scRNA-Seq)

Stephanie Hicks - Welcome to the World of Single-Cell RNA-Sequencing https://speakerdeck.com/stephaniehicks/welcome-to-the-world-of-single-cell-rna-sequencing?slide=3

It's all about a counts matrix

Single-cell RNA-Seq (scRNA-Seq)

Read Counts

	Cell 1	Cell 2	
Gene 1	18	0	
Gene 2	1010	506	
Gene 3	0	49	
Gene 4	22	0	

Stephanie Hicks - Welcome to the World of Single-Cell RNA-Sequencing https://speakerdeck.com/stephaniehicks/welcome-to-the-world-of-single-cell-rna-sequencing?slide=3

It's all about a counts matrix

Single-cell RNA-Seq (scRNA-Seq)

Stephanie Hicks - Welcome to the World of Single-Cell RNA-Sequencing https://speakerdeck.com/stephaniehicks/welcome-to-the-world-of-single-cell-rna-sequencing?slide=3

Bioconductor defines a common class for this data

Counts matrices

- Data are typically sparse (> 90% zeros)
- Number of genes & cells vary a lot
- Small datasets can be represented in memory
 - Either dense or sparse representations
- Large datasets (30,000 genes, > 1,000,000 cells) need another solution
 - HDF5 backed on-disk arrays

-		
		1
		- J
Y		

HDF5Array package provides familiar R interface to on-disk arrays

- Drop-in replacement for in-memory arrays
- Points to a single HDF5 dataset
- Upstream analysis packages don't (necessarily) care
- In practice algorithms probably need to be optimised - many are

```
M1 <- HDF5Array(
    file = "/my/special/file.h5",
    name = "counts" )
M1[1:10, ]
mean( M1 )
```


On-disk single-cell software stack

Thanks to EMBL Huber Lab & BioC community!

https://bioconductor.org/packages/rhdf5

