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Introduction
● For several years now, Fermilab has been investigating the use of HDF5 for 

large-scale analysis of experimental high energy physics (HEP) data. 
● We had a variety of requirements for running jobs at HPC facilities as an alternative to 

grid-based processing; these were matched well by HDF5:
○ parallel writing capabilities, 
○ efficient management and access to columnar data, and
○ compressed storage.

● We have now evaluated HDF5 in a wide range of HEP use-cases from raw detector 
data storage and retrieval to high-speed event selection during the later data analysis 
stages.

● Our goal has been to bring HDF5 into HEP as a standard tool for data storage and 
access.   

● In this talk, we will present a historical view (or prehistoric view, or perhaps hysterical 
view), of work that has transpired, the current state of projects, and indicate what we 
see as useful future directions. 
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HDF5 projects timeline

2021
Q1 Q2 Q3 Q4

2020
Q1 Q2 Q3 Q4

2019
Q1 Q2 Q3 Q4

2018
Q1 Q2 Q3 Q4

2017
Q1 Q2 Q3 Q4Q1 Q2 Q3 Q4

2016
Big Data Project: Using Spark and HDF5 for CMS data analysis

LDRD Project: Using HDF5 for large scale data processing  

HEP CCE: Input/Output/Storage 

SciDAC 4 Project: HEP data analytics on HPC 
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CMS Big Data Project: Spark and HDF5 for analysis
Can “Big Data” tools (e.g. Spark) and 
HPC resources benefit HEP’s data- and 
compute-intensive statistical analysis to 
improve time-to-physics?
● Compact Muon Solenoid (CMS) is one of 

the major experiments at the Large 
Hadron Collider (LHC) at CERN. In 2012, 
CMS was co-discoverer of the Higgs 
boson.

● We partnered with CMS to investigate 
Spark as a parallel analysis tool for 
columnar data stored in HDF5. 
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Spark and HDF5

● HEP had traditionally used tree-structured data.
● Data organized in form of tables (HDF5 groups 

and datasets).
● Spark was not able to handle data stored in 

HDF5 format well. Reading and building 
dataframes was slow. 

● MPI data parallel worked out extremely well 
with this data organization and resulting code 
was easy to follow. 

Publications:
● S. Sehrish, J. Kowalkowski and M. Paterno, "Spark and HPC for High Energy Physics 

Data Analyses," 2017 IEEE International Parallel and Distributed Processing Symposium 
Workshops (IPDPSW), Lake Buena Vista, FL, 2017, pp. 

● S. Sehrish, J. Kowalkowski, M. Paterno, and C. Green. 2017. Python and HPC for High 
Energy Physics Data Analyses. In Proceedings of the 7th Workshop on Python for 
High-Performance and Scientific Computing (PyHPC'17). ACM, New York, NY, USA, 
Article 8, 8 pages 1048-1057.
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Take away: HDF5 is the good part of this work. 
The findings here led to the LDRD work to use 
MPI and HDF5 for large scale data processing, 
which used data from different experiments.



Neutrino experiments
The main thrust of Fermilab today is 
neutrino physics. Experiments have run 
from small-scale test of detector 
technology to the largest neutrino 
experiments in the world. Neutrinos are 
the least-well understood particles in 
nature.

The DUNE detector in Lead, SD

The LArIAT experiment at Fermilab
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LDRD: Using LArIAT data, demo parallel processing
Can the Python ecosystem and HPC resources replace the traditional 
batch-oriented file processing used for large-scale HEP data processing?

8

● The Liquid Argon in a Testbeam 
(LArIAT) experiment’s aim is to study 
particle tracks to better understand 
how different types of particles — in 
particular electrons and photons — 
interact in liquid argon, and how these 
interactions appear in the collected 
data. This will be used to guide future 
neutrino detector design.

● We partnered with LArIAT to evaluate 
the performance of data-parallel 
Python programs at scale. 
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High-performance use for columnar storage
● LArIAT data: 42 TB of digitized waveforms

○ 3072 samples per wire
○ 480 wires per event
○ More than 15 million events

● We developed a C++ library to make simpler the writing of tabular data into 
HDF5
○ We process the data one event at a time.
○ We want the file to contain datasets that span all the events.
○ This library is now used by several experiments (to be named later)

● We wrote the data to a single compressed HDF5 file: 4.2 TB on disk.
○ This was done before parallel writing of compressed data was working; it took 36 

days of running in a single process to finish.
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Parallel reading performance at scale
• Our demo program did the first few steps of LArIAT data processing:

– read and decompress data
– on each wire: use FFT, filtering, and inverse FFT to perform noise reduction

• All operations done in Python, using mpi4py, h5py and numpy.
• Run on KNL nodes on Cori, showed near perfect scaling from 200 to 1200 

nodes.

10

Processes per node Nodes Processing time (s) Normalized time

64 200 1068.0 1.000

64 1200 180.5 0.169
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Publications:
● S. Sehrish, J. Kowalkowski, M. Paterno, and C. Green. 2018. Data Parallel Python for High Energy Physics Data 

Analyses. In Proceedings of the 8th Workshop on Python for High-Performance and Scientific Computing (PyHPC'18). 
ACM, New York, NY, USA.
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Processes per node Nodes Processing time (s) Normalized time

64 200 1068.0 1.000

64 1200 180.5 0.169

Takeaway: Excellent reading performance for 
properly structured data in HDF5. The tabular 
organization in memory resulted in simple analysis 
code with implicit data parallelism and no MPI calls 
in physicists’ code, as desired. 

Kowalkowski, Paterno, and Sehrish | The Story of HDF5 in HEP

Publications:
● S. Sehrish, J. Kowalkowski, M. Paterno, and C. Green. 2018. Data Parallel Python for High Energy Physics Data 

Analyses. In Proceedings of the 8th Workshop on Python for High-Performance and Scientific Computing (PyHPC'18). 
ACM, New York, NY, USA.



A user-friendly analysis environment (NOvA)
Goal: Support development of a user-friendly 
analysis environment using Python data science 
tools and columnar data stored in HDF5. 

● The NuMI Off-axis νe Appearance (NOvA) 
experiment is making precise measurements 
describing how muon neutrinos created at Fermilab 
transform into electron neutrinos detected at the 
site 810 km away.

● The first adopters of HDF5 “ntuples” (tabular data) 
were NOvA experimenters: they created the 
PandAna framework.
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Using the tabular organization of data for Analysis
● We have provided support for storing NOvA’s Common Analysis Format (CAF) 

equivalent data in HDF5 
● NOvA has been writing HDF5 analysis ntuples in production since 2018 

○ NOvA collaborators have been this in analysis for even longer.
● PandAna meets our ease-of-use goal

○ high-level manipulations; “whole array” manipulations rather than loop; numpy and 
pandas.

○ Python viewed as “friendlier” than C++: easier for new grad students to learn.
● Serial performance was surprisingly good:

○ Users report a faster development cycle compared to C++ (no compilation, 
interactive exploration)

○ Users report 5-100 times faster than traditional compiled C++ code for some 
analyses
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Takeaway: PandAna style of writing 
analysis code is popular and user friendly. 
Serial performance is good. Note that it 
was designed to allow data-parallel 
processing. 
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Our SciDAC project is working 
with many experiments
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● The goal of the SciDAC-4 HEP Data Analytics on HPC is to extend the physics 
reach of LHC and neutrino physics experiments by collaborating with ASCR 
scientists and utilizing the computing power and scale of national HPC facilities. 

● We have made significant steps to effectively use state-of-the-art HPC centers 
to solve HEP problems by better integrating analysis workflows onto HPC 
systems, and blending HPC software and services directly into the HEP 
applications. 

○ Use “native” HPC tools and techniques to solve HEP problems.
○ Utilize HDF5 as a storage format and tool for parallel access to analysis data.

SciDAC HEP on HPC
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Collaboration with Northwestern University (NU) on parallel writes 

Goal: Develop scalable parallel I/O utility programs to concatenate large volume of 
HEP experimental data on DOE leadership HPC computers

• The nature and context and constraints of the earlier steps of the analysis is 
such that it is not going to be run at HPC centers, and files will be too small 
in size and large in number for parallel analysis. 

• We want small number of large files for what we are looking to do. 
• We need this fast scalable concatenation to make these files. 
• The research details on this work were covered by Sunwoo Lee’s talk this 

morning. 
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Collaboration with Northwestern University (NU) on parallel writes 

Goal: Develop scalable parallel I/O utility programs to concatenate large volume of 
HEP experimental data on DOE leadership HPC computers

• The nature and context and constraints of the earlier steps of the analysis is 
such that it is not going to be run at HPC centers, and files will be too small 
in size and large in number for parallel analysis. 

• We want small number of large files for what we are looking to do. 
• We need this fast scalable concatenation to make these files. 
• The research details on this work were covered by Sunwoo Lee’s talk this 

morning. 

• Concatenation of NOvA experimental data 
enables high degree of computational parallelism 
in analysis.

• Parallel data concatenation achieved scalable 
performance on Cori.
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PandAna 2

● In our SciDAC project, we have developed an easy-to-use environment for fast 
and scalable analysis.
○ easy-to-use: Python, and Python data science tools (e.g. numpy, pandas); 
○ fast: natively data-parallel and taking advantage of HPC features; 
○ scalable: same code works on laptops, clusters, HPC systems.

● Our plan is for a tool that is not specific to any experiment, nor to just one HEP 
community (collider or neutrino).

● We enhanced PandAna to use MPI for data-parallel processing
○ Only PandAna2 library code uses MPI, for parallel reading and data distribution

● End-user code is implicitly parallel, and does not use any MPI calls
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PandAna 2

● In our SciDAC project, we have developed an easy-to-use environment for fast 
and scalable analysis.
○ easy-to-use: Python, and Python data science tools (e.g. numpy, pandas); 
○ fast: natively data-parallel and taking advantage of HPC features; 
○ scalable: same code works on laptops, clusters, HPC systems.

● Our plan is for a tool that is not specific to any experiment, nor to just one HEP 
community (collider or neutrino).

● We enhanced PandAna to use MPI for data-parallel processing
○ Only PandAna2 library code uses MPI, for parallel reading and data distribution

● End-user code is implicitly parallel, and does not use any MPI calls

Takeaway: In-memory data processing 
code scales perfectly. We are 
struggling to make reading scalable. 
Working in collaboration with NU to 
address parallel IO performance 
issues. 



21 Kowalkowski, Paterno, and Sehrish | The Story of HDF5 in HEP

Parallel reading in PandAna 2

• Distribute data equally among all ranks so no communication is necessary
• In working with NU group, we discovered that this pattern of reading interacted 

poorly with compressed therefore chunked data sets.
• Using as many MPI ranks as we would like to use for processing resulted in 

reads that were too small and not give any performance scalability. 
• We were able to do some tuning of the chunk sizes to improve the situation but 

this is not enough 
• We are working on a revision of PandAna, and working on its design to address 

these issues in multiple ways
– Reduce number of reads
– Make individual reads larger



The Exa.TrkX ML project and HDF5
• The goals of Exa.TrkX are to develop production-quality Machine Learning 

models for charged particle tracking, and to utilize distributed training with 
graph neural networks (GNNs) on HPC facilities.

– applying models to track and shower reconstruction for DUNE.
• University of Cincinnati developing numl, a package for producing HDF5 files 

for ML directly from experiment data processing frameworks.
– Contains full simulation truth information needed for training
– Includes pynuml for support of GNN workflows

• Working with NU to develop efficient methods for reading collections of 
neutrino events necessary for training GNN models
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HEP-CCEHEP Center of Computational 
Excellence (CCE) 
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HEP-CCE

CCE IO Storage

● In our SciDAC project, we have demonstrated the efficient and high 
performing data access and hence subsequent analysis by using 
HDF5 representation of the analysis-ready data.

● In the IOS project under HEP CCE, by utilizing the established 
expertise, we are evaluating the use of HDF5 for intermediate data 
storage unlike analysis-ready data in tabular form. 

● We are interested in developing an experiment-independent 
parallel HDF5 IO approach. 
○ Write HEP “data products” (representing raw detector readouts, identified 

energy deposits, particle trajectories, etc.) that have already been 
serialized using ROOT to HDF5
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HEP-CCE
IOS: Current Status

• Using data that is already serialized with ROOT facilities allowed us to come up with 
a general layout 

• We are using two HDF5 data sets to represent one data product type in an event 
• One data set carrying actual serialized byte stream and the other data set corresponding offsets 

defining event boundaries
• Allows to read data back either one data product type for all events Or all data products for one 

event 
• We are currently using a mini test Framework that was developed as a part of CCE 

work. The multithreaded framework is designed to serialize events concurrently.
• Supports different modes of input and output, such as ROOT, HDF5, etc. 
• Goal is to understand and compare performance differences among different IO 

modes 
• We have used HighFive library in the first prototype, and later switched to C API with 

minimal C++ wrappers 
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HEP-CCE
IOS: Current status and next steps

● We have used data (reconstruction-level) from ATLAS, CMS 
and DUNE in our initial design and testing

● We are currently working on a parallel IO prototype to be able 
to simultaneously write events to HDF5 files 

● We are able to run our serial HDF5 output/input mode on Cori
● Next: 

○ Performance studies to establish baseline on Cori 
○ Explore alternate layouts for writing to HDF5 datasets
○ Performance studies on parallel design
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Takeaway: This use of HDF5 is integrated with 
ROOT, and is under evaluation. We will explore 
alternate approaches and HDF5 layout in 
collaboration with HDF5 team at LBNL. 



Future directions we’d like to see for HDF5
● We need improved parallel-writing performance for compressed data

○ Addressed at this meeting by Sunwoo Lee 

● We need efficient storage and reading of sparse data 
○ Most NOvA datasets, for example, would be naturally addressed at 6D arrays, but 

they would be sparse arrays.
○ Efficient storage and reading of sparse arrays would allow us to simplify our code.
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Future directions for our work
● We are exploring a different computational model for PandAna that would 

allow fewer and larger reads, to overcome the problem we face with reading 
compressed blocks.

● We are interested in evaluation of alternative C++ interfaces to HDF5 (e.g. 
h5cpp) to understand what advantages they have for our community.

● DUNE is interested in using the MPI-based parallel writing ability of HDF5 for 
event building.

● We have greatly benefitted from working with our colleagues at NU, and plan 
to continue doing so.
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Conclusion
• HPC facilities are increasingly important to our community (HEP).
• We argue that doing HEP tasks using HPC-native technologies (as opposed to 

porting our community tools to run, somehow, on HPC) is the best way 
forward.

• We have found HDF5 to be a powerful library that provides good performance 
and solves important problems.

• Our use cases are stressing some aspects of HDF5 that have not, in the past, 
been so severely stressed. We would like to continue working with the HDF5 
community to improve these aspects of the tools.
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