
The Story of HDF5 in High Energy Physics
Jim Kowalkowski, Marc Paterno and Saba Sehrish
HDF User Group Meeting 2021
10/11/2021

Kowalkowski, Paterno, and Sehrish | The Story of HDF5 in HEP

Introduction
● For several years now, Fermilab has been investigating the use of HDF5 for

large-scale analysis of experimental high energy physics (HEP) data.
● We had a variety of requirements for running jobs at HPC facilities as an alternative to

grid-based processing; these were matched well by HDF5:
○ parallel writing capabilities,
○ efficient management and access to columnar data, and
○ compressed storage.

● We have now evaluated HDF5 in a wide range of HEP use-cases from raw detector
data storage and retrieval to high-speed event selection during the later data analysis
stages.

● Our goal has been to bring HDF5 into HEP as a standard tool for data storage and
access.

● In this talk, we will present a historical view (or prehistoric view, or perhaps hysterical
view), of work that has transpired, the current state of projects, and indicate what we
see as useful future directions.

2

HDF5 projects timeline

2021
Q1 Q2 Q3 Q4

2020
Q1 Q2 Q3 Q4

2019
Q1 Q2 Q3 Q4

2018
Q1 Q2 Q3 Q4

2017
Q1 Q2 Q3 Q4Q1 Q2 Q3 Q4

2016
Big Data Project: Using Spark and HDF5 for CMS data analysis

LDRD Project: Using HDF5 for large scale data processing

HEP CCE: Input/Output/Storage

SciDAC 4 Project: HEP data analytics on HPC

3 Kowalkowski, Paterno, and Sehrish | The Story of HDF5 in HEP

CMS Big Data Project: Spark and HDF5 for analysis
Can “Big Data” tools (e.g. Spark) and
HPC resources benefit HEP’s data- and
compute-intensive statistical analysis to
improve time-to-physics?
● Compact Muon Solenoid (CMS) is one of

the major experiments at the Large
Hadron Collider (LHC) at CERN. In 2012,
CMS was co-discoverer of the Higgs
boson.

● We partnered with CMS to investigate
Spark as a parallel analysis tool for
columnar data stored in HDF5.

4 Kowalkowski, Paterno, and Sehrish | The Story of HDF5 in HEP

Spark and HDF5

● HEP had traditionally used tree-structured data.
● Data organized in form of tables (HDF5 groups

and datasets).
● Spark was not able to handle data stored in

HDF5 format well. Reading and building
dataframes was slow.

● MPI data parallel worked out extremely well
with this data organization and resulting code
was easy to follow.

Publications:
● S. Sehrish, J. Kowalkowski and M. Paterno, "Spark and HPC for High Energy Physics

Data Analyses," 2017 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), Lake Buena Vista, FL, 2017, pp.

● S. Sehrish, J. Kowalkowski, M. Paterno, and C. Green. 2017. Python and HPC for High
Energy Physics Data Analyses. In Proceedings of the 7th Workshop on Python for
High-Performance and Scientific Computing (PyHPC'17). ACM, New York, NY, USA,
Article 8, 8 pages 1048-1057.

5 Kowalkowski, Paterno, and Sehrish | The Story of HDF5 in HEP

Tr
ee

-s
tru

ct
ur

ed
 o

rg
an

iz
at

io
n

Ta
bu

la
r o

rg
an

iz
at

io
n

Spark and HDF5

● HEP had traditionally used tree-structured data.
● Data organized in form of tables (HDF5 groups

and datasets).
● Spark was not able to handle data stored in

HDF5 format well. Reading and building
dataframes was slow.

● MPI data parallel worked out extremely well
with this data organization and resulting code
was easy to follow.

Publications:
● S. Sehrish, J. Kowalkowski and M. Paterno, "Spark and HPC for High Energy Physics

Data Analyses," 2017 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), Lake Buena Vista, FL, 2017, pp.

● S. Sehrish, J. Kowalkowski, M. Paterno, and C. Green. 2017. Python and HPC for High
Energy Physics Data Analyses. In Proceedings of the 7th Workshop on Python for
High-Performance and Scientific Computing (PyHPC'17). ACM, New York, NY, USA,
Article 8, 8 pages 1048-1057.

6 Kowalkowski, Paterno, and Sehrish | The Story of HDF5 in HEP

Tr
ee

-s
tru

ct
ur

ed
 o

rg
an

iz
at

io
n

Ta
bu

la
r o

rg
an

iz
at

io
n

Take away: HDF5 is the good part of this work.
The findings here led to the LDRD work to use
MPI and HDF5 for large scale data processing,
which used data from different experiments.

Neutrino experiments
The main thrust of Fermilab today is
neutrino physics. Experiments have run
from small-scale test of detector
technology to the largest neutrino
experiments in the world. Neutrinos are
the least-well understood particles in
nature.

The DUNE detector in Lead, SD

The LArIAT experiment at Fermilab

7 Kowalkowski, Paterno, and Sehrish | The Story of HDF5 in HEP

LDRD: Using LArIAT data, demo parallel processing
Can the Python ecosystem and HPC resources replace the traditional
batch-oriented file processing used for large-scale HEP data processing?

8

● The Liquid Argon in a Testbeam
(LArIAT) experiment’s aim is to study
particle tracks to better understand
how different types of particles — in
particular electrons and photons —
interact in liquid argon, and how these
interactions appear in the collected
data. This will be used to guide future
neutrino detector design.

● We partnered with LArIAT to evaluate
the performance of data-parallel
Python programs at scale.

Kowalkowski, Paterno, and Sehrish | The Story of HDF5 in HEP

High-performance use for columnar storage
● LArIAT data: 42 TB of digitized waveforms

○ 3072 samples per wire
○ 480 wires per event
○ More than 15 million events

● We developed a C++ library to make simpler the writing of tabular data into
HDF5
○ We process the data one event at a time.
○ We want the file to contain datasets that span all the events.
○ This library is now used by several experiments (to be named later)

● We wrote the data to a single compressed HDF5 file: 4.2 TB on disk.
○ This was done before parallel writing of compressed data was working; it took 36

days of running in a single process to finish.

9 Kowalkowski, Paterno, and Sehrish | The Story of HDF5 in HEP

Parallel reading performance at scale
• Our demo program did the first few steps of LArIAT data processing:

– read and decompress data
– on each wire: use FFT, filtering, and inverse FFT to perform noise reduction

• All operations done in Python, using mpi4py, h5py and numpy.
• Run on KNL nodes on Cori, showed near perfect scaling from 200 to 1200

nodes.

10

Processes per node Nodes Processing time (s) Normalized time

64 200 1068.0 1.000

64 1200 180.5 0.169

Kowalkowski, Paterno, and Sehrish | The Story of HDF5 in HEP

Publications:
● S. Sehrish, J. Kowalkowski, M. Paterno, and C. Green. 2018. Data Parallel Python for High Energy Physics Data

Analyses. In Proceedings of the 8th Workshop on Python for High-Performance and Scientific Computing (PyHPC'18).
ACM, New York, NY, USA.

Parallel reading performance at scale
• Our demo program did the first few steps of LArIAT data processing:

– read and decompress data
– on each wire: use FFT, filtering, and inverse FFT to perform noise reduction

• All operations done in Python, using mpi4py, h5py and numpy.
• Run on KNL nodes on Cori, showed near perfect scaling from 200 to 1200

nodes.

11

Processes per node Nodes Processing time (s) Normalized time

64 200 1068.0 1.000

64 1200 180.5 0.169

Takeaway: Excellent reading performance for
properly structured data in HDF5. The tabular
organization in memory resulted in simple analysis
code with implicit data parallelism and no MPI calls
in physicists’ code, as desired.

Kowalkowski, Paterno, and Sehrish | The Story of HDF5 in HEP

Publications:
● S. Sehrish, J. Kowalkowski, M. Paterno, and C. Green. 2018. Data Parallel Python for High Energy Physics Data

Analyses. In Proceedings of the 8th Workshop on Python for High-Performance and Scientific Computing (PyHPC'18).
ACM, New York, NY, USA.

A user-friendly analysis environment (NOvA)
Goal: Support development of a user-friendly
analysis environment using Python data science
tools and columnar data stored in HDF5.

● The NuMI Off-axis νe Appearance (NOvA)
experiment is making precise measurements
describing how muon neutrinos created at Fermilab
transform into electron neutrinos detected at the
site 810 km away.

● The first adopters of HDF5 “ntuples” (tabular data)
were NOvA experimenters: they created the
PandAna framework.

12 Kowalkowski, Paterno, and Sehrish | The Story of HDF5 in HEP

Using the tabular organization of data for Analysis
● We have provided support for storing NOvA’s Common Analysis Format (CAF)

equivalent data in HDF5
● NOvA has been writing HDF5 analysis ntuples in production since 2018

○ NOvA collaborators have been this in analysis for even longer.
● PandAna meets our ease-of-use goal

○ high-level manipulations; “whole array” manipulations rather than loop; numpy and
pandas.

○ Python viewed as “friendlier” than C++: easier for new grad students to learn.
● Serial performance was surprisingly good:

○ Users report a faster development cycle compared to C++ (no compilation,
interactive exploration)

○ Users report 5-100 times faster than traditional compiled C++ code for some
analyses

13 Kowalkowski, Paterno, and Sehrish | The Story of HDF5 in HEP

Using the tabular organization of data for Analysis
● We have provided support for storing NOvA’s Common Analysis Format (CAF)

equivalent data in HDF5
● NOvA has been writing HDF5 analysis ntuples in production since 2018

○ NOvA collaborators have been this in analysis for even longer.
● PandAna meets our ease-of-use goal

○ high-level manipulations; “whole array” manipulations rather than loop; numpy and
pandas.

○ Python viewed as “friendlier” than C++: easier for new grad students to learn.
● Serial performance was surprisingly good:

○ Users report a faster development cycle compared to C++ (no compilation,
interactive exploration)

○ Users report 5-100 times faster than traditional compiled C++ code for some
analyses

14

Takeaway: PandAna style of writing
analysis code is popular and user friendly.
Serial performance is good. Note that it
was designed to allow data-parallel
processing.

Kowalkowski, Paterno, and Sehrish | The Story of HDF5 in HEP

Our SciDAC project is working
with many experiments

15

● The goal of the SciDAC-4 HEP Data Analytics on HPC is to extend the physics
reach of LHC and neutrino physics experiments by collaborating with ASCR
scientists and utilizing the computing power and scale of national HPC facilities.

● We have made significant steps to effectively use state-of-the-art HPC centers
to solve HEP problems by better integrating analysis workflows onto HPC
systems, and blending HPC software and services directly into the HEP
applications.

○ Use “native” HPC tools and techniques to solve HEP problems.
○ Utilize HDF5 as a storage format and tool for parallel access to analysis data.

SciDAC HEP on HPC

16 Kowalkowski, Paterno, and Sehrish | The Story of HDF5 in HEP

17 Kowalkowski, Paterno, and Sehrish | The Story of HDF5 in HEP

Collaboration with Northwestern University (NU) on parallel writes

Goal: Develop scalable parallel I/O utility programs to concatenate large volume of
HEP experimental data on DOE leadership HPC computers

• The nature and context and constraints of the earlier steps of the analysis is
such that it is not going to be run at HPC centers, and files will be too small
in size and large in number for parallel analysis.

• We want small number of large files for what we are looking to do.
• We need this fast scalable concatenation to make these files.
• The research details on this work were covered by Sunwoo Lee’s talk this

morning.

18 Kowalkowski, Paterno, and Sehrish | The Story of HDF5 in HEP

Collaboration with Northwestern University (NU) on parallel writes

Goal: Develop scalable parallel I/O utility programs to concatenate large volume of
HEP experimental data on DOE leadership HPC computers

• The nature and context and constraints of the earlier steps of the analysis is
such that it is not going to be run at HPC centers, and files will be too small
in size and large in number for parallel analysis.

• We want small number of large files for what we are looking to do.
• We need this fast scalable concatenation to make these files.
• The research details on this work were covered by Sunwoo Lee’s talk this

morning.

• Concatenation of NOvA experimental data
enables high degree of computational parallelism
in analysis.

• Parallel data concatenation achieved scalable
performance on Cori.

19 Kowalkowski, Paterno, and Sehrish | The Story of HDF5 in HEP

PandAna 2

● In our SciDAC project, we have developed an easy-to-use environment for fast
and scalable analysis.
○ easy-to-use: Python, and Python data science tools (e.g. numpy, pandas);
○ fast: natively data-parallel and taking advantage of HPC features;
○ scalable: same code works on laptops, clusters, HPC systems.

● Our plan is for a tool that is not specific to any experiment, nor to just one HEP
community (collider or neutrino).

● We enhanced PandAna to use MPI for data-parallel processing
○ Only PandAna2 library code uses MPI, for parallel reading and data distribution

● End-user code is implicitly parallel, and does not use any MPI calls

20 Kowalkowski, Paterno, and Sehrish | The Story of HDF5 in HEP

PandAna 2

● In our SciDAC project, we have developed an easy-to-use environment for fast
and scalable analysis.
○ easy-to-use: Python, and Python data science tools (e.g. numpy, pandas);
○ fast: natively data-parallel and taking advantage of HPC features;
○ scalable: same code works on laptops, clusters, HPC systems.

● Our plan is for a tool that is not specific to any experiment, nor to just one HEP
community (collider or neutrino).

● We enhanced PandAna to use MPI for data-parallel processing
○ Only PandAna2 library code uses MPI, for parallel reading and data distribution

● End-user code is implicitly parallel, and does not use any MPI calls

Takeaway: In-memory data processing
code scales perfectly. We are
struggling to make reading scalable.
Working in collaboration with NU to
address parallel IO performance
issues.

21 Kowalkowski, Paterno, and Sehrish | The Story of HDF5 in HEP

Parallel reading in PandAna 2

• Distribute data equally among all ranks so no communication is necessary
• In working with NU group, we discovered that this pattern of reading interacted

poorly with compressed therefore chunked data sets.
• Using as many MPI ranks as we would like to use for processing resulted in

reads that were too small and not give any performance scalability.
• We were able to do some tuning of the chunk sizes to improve the situation but

this is not enough
• We are working on a revision of PandAna, and working on its design to address

these issues in multiple ways
– Reduce number of reads
– Make individual reads larger

The Exa.TrkX ML project and HDF5
• The goals of Exa.TrkX are to develop production-quality Machine Learning

models for charged particle tracking, and to utilize distributed training with
graph neural networks (GNNs) on HPC facilities.

– applying models to track and shower reconstruction for DUNE.
• University of Cincinnati developing numl, a package for producing HDF5 files

for ML directly from experiment data processing frameworks.
– Contains full simulation truth information needed for training
– Includes pynuml for support of GNN workflows

• Working with NU to develop efficient methods for reading collections of
neutrino events necessary for training GNN models

22 Kowalkowski, Paterno, and Sehrish | The Story of HDF5 in HEP

HEP-CCEHEP Center of Computational
Excellence (CCE)

23

HEP-CCE

CCE IO Storage

● In our SciDAC project, we have demonstrated the efficient and high
performing data access and hence subsequent analysis by using
HDF5 representation of the analysis-ready data.

● In the IOS project under HEP CCE, by utilizing the established
expertise, we are evaluating the use of HDF5 for intermediate data
storage unlike analysis-ready data in tabular form.

● We are interested in developing an experiment-independent
parallel HDF5 IO approach.
○ Write HEP “data products” (representing raw detector readouts, identified

energy deposits, particle trajectories, etc.) that have already been
serialized using ROOT to HDF5

24

HEP-CCE
IOS: Current Status

• Using data that is already serialized with ROOT facilities allowed us to come up with
a general layout

• We are using two HDF5 data sets to represent one data product type in an event
• One data set carrying actual serialized byte stream and the other data set corresponding offsets

defining event boundaries
• Allows to read data back either one data product type for all events Or all data products for one

event
• We are currently using a mini test Framework that was developed as a part of CCE

work. The multithreaded framework is designed to serialize events concurrently.
• Supports different modes of input and output, such as ROOT, HDF5, etc.
• Goal is to understand and compare performance differences among different IO

modes
• We have used HighFive library in the first prototype, and later switched to C API with

minimal C++ wrappers

25

HEP-CCE
IOS: Current status and next steps

● We have used data (reconstruction-level) from ATLAS, CMS
and DUNE in our initial design and testing

● We are currently working on a parallel IO prototype to be able
to simultaneously write events to HDF5 files

● We are able to run our serial HDF5 output/input mode on Cori
● Next:

○ Performance studies to establish baseline on Cori
○ Explore alternate layouts for writing to HDF5 datasets
○ Performance studies on parallel design

26

HEP-CCE
IOS: Current status and next steps

● We have used data (reconstruction-level) from ATLAS, CMS
and DUNE in our initial design and testing

● We are currently working on a parallel IO prototype to be able
to simultaneously write events to HDF5 files

● We are able to run our serial HDF5 output/input mode on Cori
● Next:

○ Performance studies to establish baseline on Cori
○ Explore alternate layouts for writing to HDF5 datasets
○ Performance studies on parallel design

27

Takeaway: This use of HDF5 is integrated with
ROOT, and is under evaluation. We will explore
alternate approaches and HDF5 layout in
collaboration with HDF5 team at LBNL.

Future directions we’d like to see for HDF5
● We need improved parallel-writing performance for compressed data

○ Addressed at this meeting by Sunwoo Lee

● We need efficient storage and reading of sparse data
○ Most NOvA datasets, for example, would be naturally addressed at 6D arrays, but

they would be sparse arrays.
○ Efficient storage and reading of sparse arrays would allow us to simplify our code.

28 Kowalkowski, Paterno, and Sehrish | The Story of HDF5 in HEP

Future directions for our work
● We are exploring a different computational model for PandAna that would

allow fewer and larger reads, to overcome the problem we face with reading
compressed blocks.

● We are interested in evaluation of alternative C++ interfaces to HDF5 (e.g.
h5cpp) to understand what advantages they have for our community.

● DUNE is interested in using the MPI-based parallel writing ability of HDF5 for
event building.

● We have greatly benefitted from working with our colleagues at NU, and plan
to continue doing so.

29 Kowalkowski, Paterno, and Sehrish | The Story of HDF5 in HEP

Conclusion
• HPC facilities are increasingly important to our community (HEP).
• We argue that doing HEP tasks using HPC-native technologies (as opposed to

porting our community tools to run, somehow, on HPC) is the best way
forward.

• We have found HDF5 to be a powerful library that provides good performance
and solves important problems.

• Our use cases are stressing some aspects of HDF5 that have not, in the past,
been so severely stressed. We would like to continue working with the HDF5
community to improve these aspects of the tools.

30 Kowalkowski, Paterno, and Sehrish | The Story of HDF5 in HEP

The work presented in this talk is based upon work supported by
• The U.S. Department of Energy, Office of Science, Office of Advanced Scientific

Computing Research, Scientific Discovery through Advanced Computing (SciDAC)
program.

• The work presented in this talk is supported by the U.S. Department of Energy, Office of
Science, Office of High Energy Physics, High Energy Physics Center for Computational
Excellence (HEP-CCE) at Argonne National Laboratory, Fermi National Accelerator
Laboratory, and Lawrence Berkeley National Laboratory.

This research used resources of
• The National Energy Research Scientific Computing Center (NERSC), a U.S. Department

of Energy Office of Science User Facility located at Lawrence Berkeley National
Laboratory.

• The Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office
of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC
(FRA), acting under Contract No. DE-AC02-07CH11359, and includes funding from
Fermilab LDRD program.

Acknowledgements

31

