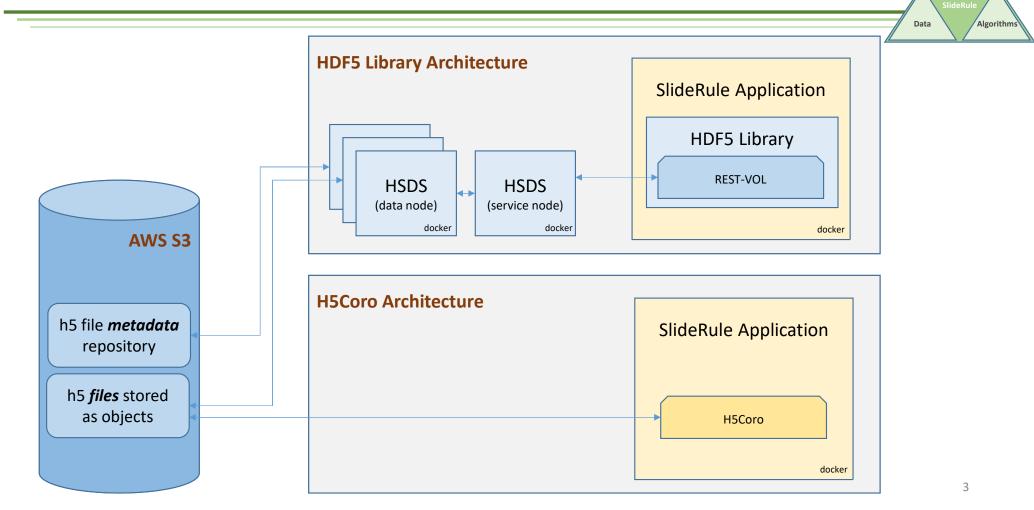



1

## **The Future of H5Coro**

HDF Users Group (HUG) 2021 JP Swinski/NASA/GSFC October 12, 2021




H5Coro is an independent implementation in **C++** of a subset of the HDF5 standard that is optimized for reading **static data from cloud-based storage systems**.

What is H5Coro

The H5Coro software is under active development by the University of Washington and NASA/Goddard Space Flight Center as a part of the SlideRule program for ondemand processing of **ICESat-2** data.

#### Where H5Coro Fits In



APIs

## Key Features

- All reads are concurrent. Multiple threads within the same application can issue read requests through H5Coro and those reads will get executed in parallel.
- **Intelligent range gets** are used to read as many dataset chunks as possible in each read operation. This drastically reduces the number of HTTP requests to S3 and means there is no longer a need to re-chunk the data (it actually works better on smaller chunk sizes due to the granularity of the request).
- **The system is serverless**. H5Coro is linked into the running application and scales naturally as the application scales. This reduces overall system complexity.
- No metadata repository is needed. Instead of caching the contents of the datasets which are large and may or may not be read again, the library focuses on caching the structure of the file so that successive reads to other datasets in the same file will not have to re-read and re-build the directory structure of the file.

APIs

Algorith

#### Performance Comparison

| Library       | File Storage    | File Structure        | Cached          | Instance               | Time (secs)                |
|---------------|-----------------|-----------------------|-----------------|------------------------|----------------------------|
| HDF5/REST-VOL | S3              | Original              | Yes             | c5.2xlarge             | 9559 (~2 ½ hrs)            |
| HDF5/REST-VOL | S3              | Original              | No              | c5.2xlarge             | 9029                       |
| HDF5/REST-VOL | S3              | Repacked              | No              | c5.2xlarge             | 3215                       |
| HDF5/REST-VOL | S3              | Repacked              | Yes             | c5.2xlarge             | 3157                       |
| H5Coro        | S3              | Repacked              | No              | c5.xlarge              | 368                        |
| H5Coro        | S3              | Repacked              | Yes             | c5.xlarge              | 336                        |
| HDF5          | Ext4            | Original              | No              | desktop                | 154                        |
| H5Coro        | <mark>S3</mark> | <mark>Original</mark> | <mark>No</mark> | <mark>c5.xlarge</mark> | <mark>116</mark> (~2 mins) |
| H5Coro        | S3              | Original              | Yes             | c5.xlarge              | 72                         |
| H5Coro        | Ext4/Buffered   | Original              | No              | desktop                | 56                         |

APIs

Algorithms

#### **Current Status**

- Actively deployed in ICESat-2's SlideRule system.
- Added non-blocking read API that returns a *future*; supports greater parallelization.
- Python bindings continue to be improved with help from group of seismic researchers at UW.

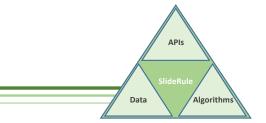
APIs

Algorithn

#### Future Work

- API to return metadata associated with dataset (dimensions, data type)
- API to return directory listing of h5 file's groups and datasets
- Support for reading *attribute* messages

APIs

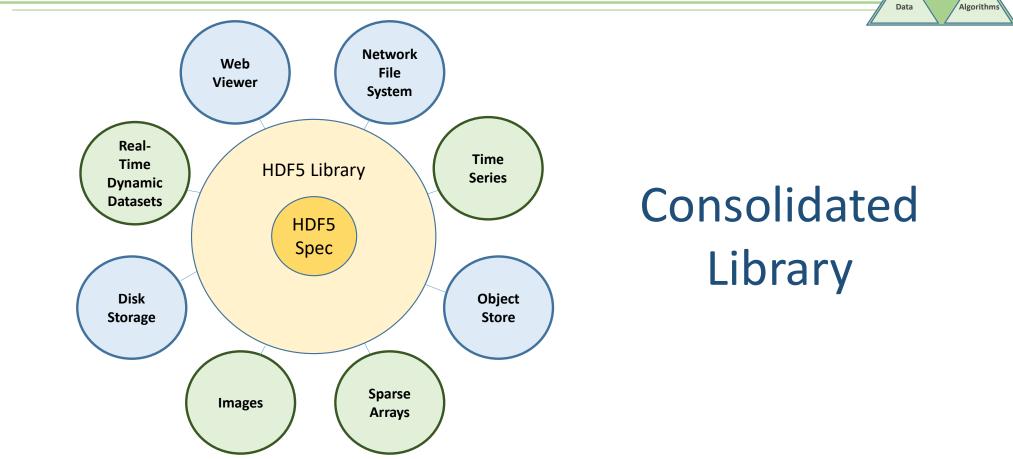

Algorith



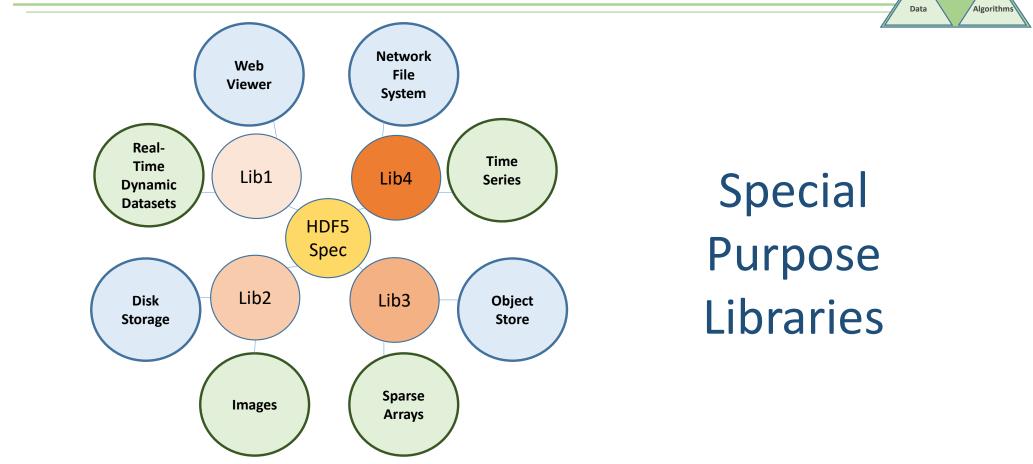
## Our goal is for H5Coro to become a niche implementation optimized for reading static data out of S3

APIs

Algorithn

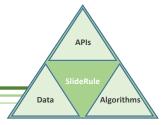



#### What should the future hold?


#### Our goal is for H5Coro to become one of many

a niche implementations optimized for reading - static data out of S3 & writing application specific data

# How to Handle Different Applications

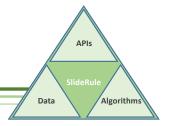



#### How to Handle Different Applications



APIs

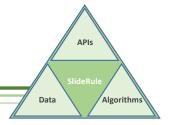
#### Which is better?




## Consolidated Library

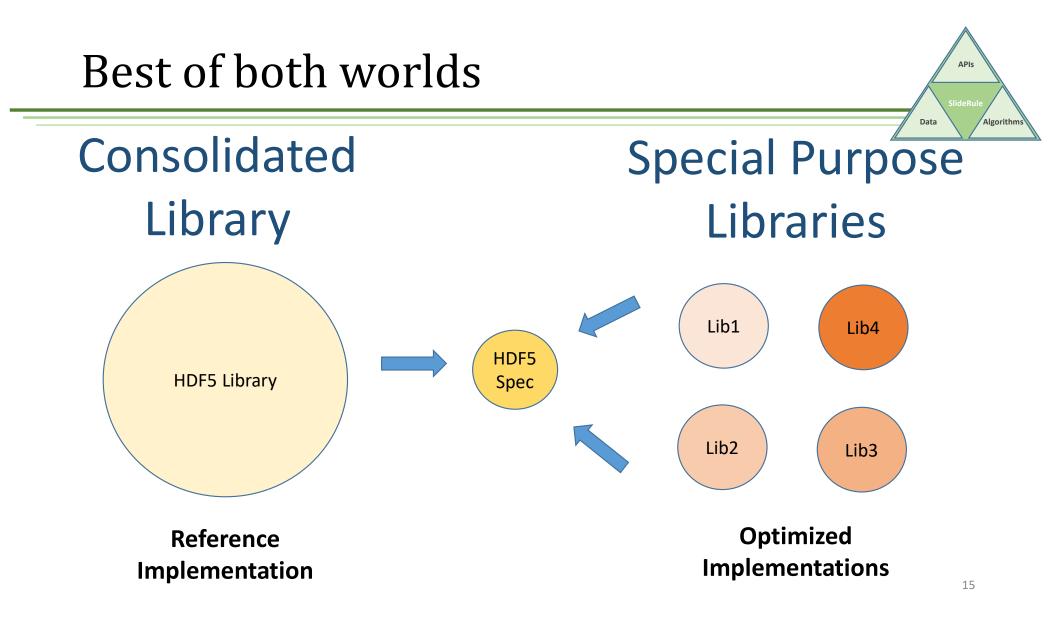


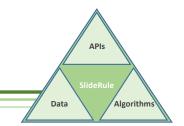
Special Purpose Libraries


#### Which is better?



## Consolidated Purpose Library Libraries


We don't need to choose... we can do both.


#### Which is better?

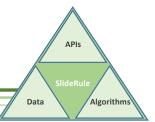


## Consolidated Purpose Library Libraries

We don't need to choose... we can do both. If you have a tight, simple, stable **specification**.






What steps can we take to promote the development of special purpose implementations of the HDF5 specification in different programming languages and for different applications?

## Proposal

- Identify a small set of important data models and applications that cover many of the existing use cases for HDF5
  - Static write-once, read-many image data
  - High latency storage systems
  - ...
- Define a subset of the HDF5 specification specifically suited to each data model and application identified above
- Build an option into the current HDF5 library to write (and check on read) H5 files that adhere to the subsetted specification.

APIs

Algorith



#### H5Coro as an example

- Six weeks to get first working system

- A lot of the specification not implemented (and yet it works for many applications)

- A lot of the specification needed to be implemented just to get basic functionality

## H5Coro Specifications NOT Supported

APIs SlideRule Data Algorithms

The following portions of the HDF5 format specification are intentionally not implemented:

- All write operations
- File free space management
- File driver information
- Virtual datasets

The following portions of the HDF5 format specification are intentionally constrained:

- Datasets with dimensions greater than 2 are flattened to 2 dimensions and left to the user to index.
- Only sequentially stored data can be read at one time, hyperslabs are not supported.
- Data type conversions are supported for fixed and floating point numbers only, but the intended use of the library is to return a raw memory block with the data values written sequentially into it, allowing the user to cast the memory to the correct array type.

#### H5Coro Support for File Structures

| Format Element                     | Supported | Contains         | Missing         |
|------------------------------------|-----------|------------------|-----------------|
| Field Sizes                        | Yes       | 1, 2, 4, 8 bytes |                 |
| Superblock                         | Partial   | Version 0        | Version 1, 2, 3 |
| B-Tree                             | Partial   | Version 1        | Version 2       |
| Group Symbol Table                 | Yes       | Version 1        |                 |
| Local Heap                         | Yes       | Version 0        |                 |
| Global Heap                        | No        |                  | Version 1       |
| Fractal Heap                       | Yes       | Version 0        |                 |
| Shared Object Header Message Table | No        |                  | Version 0       |
| Data Object Headers                | Yes       | Version 1, 2     |                 |

APIs

Algorithms

#### H5Coro Support for Messages

| -<br>Format Element                           | Supported | Contains     | Missing         |
|-----------------------------------------------|-----------|--------------|-----------------|
| Shared Message                                | No        |              | Version 1       |
| NIL Message                                   | Yes       | Unversioned  |                 |
| Dataspace Message                             | Yes       | Version 1    |                 |
| Link Info Message                             | Yes       | Version 0    |                 |
| Datatype Message                              | Partial   | Version 1    | Version 0, 2, 3 |
| Fill Value (Old) Message                      | No        |              | Unversioned     |
| Fill Value Message                            | Partial   | Version 2    | Version 1, 3    |
| Link Message                                  | Yes       | Version 1    |                 |
| External Data Files Message                   | No        |              | Version 1       |
| Data Layout Message                           | Partial   | Version 3    | Version 1, 2    |
| Bogus Message                                 | No        |              | Unversioned     |
| Group Info Message                            | No        |              | Version 0       |
| Filter Pipeline Message                       | Yes       | Version 1    |                 |
| Attribute Message                             | No        |              | Version 1       |
| Object Comment Message                        | No        |              | Unversioned     |
| <b>Object Modification Time (Old) Message</b> | No        |              | Unversioned     |
| Shared Message Table Message                  | No        |              | Version 0       |
| <b>Object Header Continuation Message</b>     | Yes       | Version 1, 2 |                 |
| Symbol Table Message                          | Yes       | Unversioned  |                 |
| Object Modification Time Message              | No        |              | Version 1       |
| B-Tree 'K' Value Message                      | No        |              | Version 0       |
| Driver Info Message                           | No        |              | Version 0       |
| Attribute Info Message                        | No        |              | Version 0       |
| Object Reference Count Message                | No        |              | Version 0       |

21

APIs

Data

Algorithms

## H5Coro Support for Storage, Types, Filters

APIs SlideRule Data Algorithms

| Format Element       | Supported | Contains | Missing |
|----------------------|-----------|----------|---------|
| Compact Storage      | Yes       |          |         |
| Continuous Storage   | Yes       |          |         |
| Chunked Storage      | Yes       |          |         |
| Fixed Point Type     | Yes       |          |         |
| Floating Point Type  | Yes       |          |         |
| Time Type            | No        |          |         |
| String Type          | No        |          |         |
| Bit Field Type       | No        |          |         |
| Opaque Type          | No        |          |         |
| Compound Type        | No        |          |         |
| Reference Type       | No        |          |         |
| Enumerated Type      | No        |          |         |
| Variable Length Type | No        |          |         |
| Array Type           | No        |          |         |
| Deflate Filter       | Yes       |          |         |
| Shuffle Filter       | Yes       |          |         |
| Fletcher32 Filter    | No        |          |         |
| Szip Filter          | No        |          |         |
| Nbit Filter          | No        |          |         |
| Scale Offset Filter  | No        |          |         |

## Back of a Napkin H5 Cloud Standard

Field Size (8 bytes)

Superblock (version 1)

**B-Tree** (version 1)

**Data Object Headers** (version 2)

**Messages**: Dataspace, Datatype, Fill Value, Link, Data Layout, Filter Pipeline, Attribute, Object Comment, Header Continuation

Storage: compact, continue, chunked

Types: Fixed Point, Floating Point, Time, String

Filter: Deflate, Shuffle, Fletcher32, Szip, Nbit, Scale Offset

APIs

Algorithn

#### Acronyms

