
Copyright 2019, The HDF Group

October 20, 2021

Selection I/O in HDF5 Virtual File Drivers

Neil Fortner, The HDF Group

2Virtual File Layer
§ Sits between HDF5 library and filesystem
§ Library provides single offset, length, and
buffer for I/O, Virtual File Driver (VFD) is
responsible for translating to underlying
I/O system
§ Direct map to single files on traditional
POSIX like file systems

October 20, 2021

File or other “storage”

Virtual file I/O

Library internals

Object API (C, F90, C++, Java)

Applications

3Virtual File Layer
§ Existing read/write interfaces for VFD
⁃ herr_t (*read)(H5FD_t *file, H5FD_mem_t type, hid_t dxpl,
haddr_t addr, size_t size, void *buffer);

⁃ herr_t (*write)(H5FD_t *file, H5FD_mem_t type, hid_t dxpl,
haddr_t addr, size_t size, const void *buffer);

read() = read(0, 3);

read(10, 3);

read(20, 3);

read(30, 3);

read(40, 3);

October 20, 2021

4Motivation: Non-Contiguous I/O
§ With the existing scheme, non-contiguous I/O must be broken into a
single VFD call for each block of bytes
⁃ Simple, effective for traditional file systems

§ More advanced storage systems can take advantage of having
knowledge of the whole I/O request
⁃ MPI I/O
⁃ Asynchronous I/O
⁃ Subfiling
⁃ Object stores
⁃ Etc

October 20, 2021

5MPIO File Driver
§ The existing MPIO file driver takes advantage of non-contiguous I/O
requests
⁃ Code written in the library specifically for the MPIO driver packages information

on the I/O pattern and passes it to the driver through an undocumented channel
⁃ Library makes a single call to the file driver with partly fake single block

parameters
⁃ MPIO VFD unpacks information from the undocumented channel to obtain the

real I/O pattern, passes it to MPI
⁃ This pattern undermines the principle motivation for the VFL, that end users can

implement their own storage interfaces using public APIs
⁃ Must develop a generalized scheme for passing non-contiguous I/O requests to

the VFD using public APIs

October 20, 2021

6Method 1: Vector I/O
§ Instead of passing a single offset/length/buffer, pass vectors of each
§ Simple extension, but inefficient for repeating patterns
§ herr_t (*read_vector)(H5FD_t *file, hid_t dxpl,
uint32_t count, H5FD_mem_t types[], haddr_t addrs[],
size_t sizes[], void *bufs[]);
§ herr_t (*write_vector)(H5FD_t *file, hid_t dxpl,
uint32_t count, H5FD_mem_t types[], haddr_t addrs[],
size_t sizes[], const void *bufs[])
read() = read_vector({0, 10, 20, 30,

40}, {3, 3, 3, 3, 3});

October 20, 2021

7Method 2: Selection I/O
§ Pass HDF5 dataspace selections for file and memory (or a vector of
them)
§ More efficient for repeating patterns
§ Taking full advantage of selection I/O in an external VFD will require
new HDF5 API routines, which we are planning to develop

October 20, 2021

8Method 2: Selection I/O
§ herr_t (*read_selection)(H5FD_t *file, H5FD_mem_t type,
hid_t dxpl_id, size_t count, hid_t mem_spaces[], hid_t
file_spaces[], haddr_t offsets[], size_t
element_sizes[], void *bufs[] /*out*/)
§ herr_t (*write_selection)(H5FD_t *file, H5FD_mem_t
type, hid_t dxpl_id, size_t count, hid_t mem_spaces[],
hid_t file_spaces[], haddr_t offsets[], size_t
element_sizes[], const void *bufs[] /*in*/);
read() = read_selection(hyperslab(

(0,0), NULL, (5, 3), NULL));

October 20, 2021

9Current Status
§ In selection_io branch:
⁃ H5FD_t file driver callbacks added
⁃ H5FD public API calls added
⁃ Library can pass selection I/O requests for most common I/O use cases
⁃ H5FD code can translate selection and vector requests to vector or scalar

requests if the VFD does not support the I/O mode requested
⁃ MPIO file driver supports vector I/O, including in collective mode
⁃ No performance hit seen with selection I/O enabled (haven’t finished

implementing VFDs that could see improved performance yet)

October 20, 2021

10Future Work
§ Support remaining use cases in the library with selection and/or
vector I/O
§ Remove scalar I/O paths, especially for parallel
§ Implement selection I/O in MPIO VFD
§ Implement new routines to allow efficient retrieval of selection
patterns
§ Implement VFDs that benefit from selection I/O (subfiling)

October 20, 2021

