Paradise Lost -
Moving away from HDFS5

Gerd Heber, The HDF Group

L
g |
The HDF Group

Should you use HDF5? Ref. 2
Causa ey 30, 7006

tags:

This is a follow-up on my post Moving away from HDF5 (see also Konrad Hinsen's post,
and discussions on Twitter and Hacker News). Here are some further thoughts, in no
particular order.

First, others have pointed out alternative implementations of the HDF5 specification

(complete or not), notably in Julia and Java. | haven't tried them so | don't know how good

they are. | don't know of any alternative implementation in Python. It would be interesting to
n't depend on libhdf5.

Moving away from HDF5 Ref. 1

ght tool for us, others reported
ses HDF5 with lots of tiny

50, we have large volumes of
simulations. These are quite

Update [2016-01-30]: | wrote a follow-up here

In the research lab where | work, we've been developing a data processing pipeline for
several years. This includes not only a program but also a new file format based on HDF5

for a specific type of data. While the choice of HDF5 was looking compelling on paper, Cyrille Rossant, PhD Acv
we found many issues with it. Recently, despite the high costs, we decided to abandon Neuroscience researcher and
this format in our software. software engineer at IBL and UCL
» IBL: Ints tional Brai boratc
In this post, I'll describe what is HDF5 and what are the issues that made us move away » UCL: Uni s College Lond
fromit. ne.lastname@gmail.cor m

neitedaptcndait The HDF Group

https://cyrille.rossant.net/should-you-use-hdf5/
https://cyrille.rossant.net/should-you-use-hdf5/

First Things First

Read it!

| believe Mr. Rossant made an important contribution

| (we) have the benefit of hindsight

The first article is tainted by (understandable!) frustration

The second article is more sober

For the next ~15 min, | will focus on the good bits (= which make this an
important contribution)

The not-so-good bits are easily spotted by knowledgeable readers & many
were addressed in the comments already

We should follow up w/ a blog post of our own (volunteers?)

LN
s
The HDF Group

Reactions

e 43 comments on the first post
e Commenters
e Pointed out independent (from the HDF5 library) implementations
e Refuted some of the poor performance claims (mistakes in benchmark)
e Referred to HDF5 success stories
e 18 comments on the second post
e Commenters
e Called out alternatives (DBMS, Exdir, Zarr, ROOT, ASDF, ...)

LN
s
The HDF Group

Issues (from Ref. 1)

High risks of data corruption

Bugs and crashes in the HDF5 library and in the wrappers

Poor performance in some situations

Limited support for parallel access

Impossibility to explore datasets with standard Unix/Windows tools

Hard dependence on a single implementation of the library

High complexity of the specification and the implementation

Opacity of the development and slow reactivity of the development team

LN
s
The HDF Group

Conclusion Fromret.1)

We've learned our lesson. Designing, maintaining, and promoting a file format within
a community is hard. It cannot be reasonably done by a small group of people who also
need to write software, develop algorithms, and do research.

We've now rewritten our software to make it modular and completely agnostic to file
formats. We've moved from writing a monolithic application to writing a library. We're
encouraging our users to adapt these components to whatever file format they're already
using. The APIs we provide make this straightforward.

There is always a tension, in that many of our users are biologists without a computer
science background [to simplify, they're using Windows, Word, and MATLAB instead of
Unix, vim/emacs, and Python] and they expect an integrated single-click graphical
program. The solution we've found is to develop the library first, and then write separately
an integrated solution based on this library.

The HDF Group

Sharing vs. Access (Ref. 2)

Another thing is that we must make a dlstmctlon between creating, analyzing, and sharmg a
dataset. With our file format we tried to do all of these things with the same structure. As far as
| understand it, this is what HDF5 encourages you to do. But these different use cases pose
different constraints on how you store your data.

When creating a dataset, you want a fast write access. For analysis, you want a fast read
access. For sharing, you want as few files as possible (ideally, one), with a clean internal
structure. Of course this is overly simplistic.

It's hard to have a one-size-fits-all format. In our experience, HDF5 seemed to be a good

option for sharing large datasets, but not that good for our peculiar read/write access
patterns.

LN
L/
The HDF Group

Four Legs Good, Two Legs Bad? (Ref. 2)

What we ended up doing at some point is using HDF5 only for sharing data. When importing
the data into our software, we copied it into an internal format based on flat binary arrays.

With this change, our software was much faster, at the expense of disk space and a longer
initial loading time.

Effectively, we used a different format for sharing and for analyzing our data. If you need a file

format, think hard about your requirements. Which is the most important to you: sharing,
reading, writing?

LN
L/
The HDF Group

ASDF “Straw Man” (Ref. 2)

[...] Because of the complexity, there is effectively only one implementation. The drawback of having
only one implementation is that it may deviate from the published specification (who would know
since there is no independent verification?). [...]

A related issue is that for some time the HDF format was not considered archival as it kept changing,

and for a time it was considered more of a software API than a specific representétion on disk. HDF5
has been relatively stable, though given the lack of multiple implementations and self documenting
nature makes it less appropriate as an archival format. Will the future library be able to read much

older files?

LI
L/
The HDF Group

Decisions, Decisions, Decisions... (Ref. 2)

Hopefully you should now be in a position to decide whether HDF5 is the right tool for you, or if
you need to explore other options. The main question you should ask is: do you absolutely need
a portable container format containing many numerical arrays? If the answer is yes, you might
have no other choice than HDF5, and you should be aware of its drawbacks. Do prototypes and
benchmarks to avoid bad surprises in product|on

LN
L/
The HDF Group

Do We Need / Who Needs File Formats?

The more important question is: do you really need a file format in the first place? If you're
targeting advanced users who are familiar with Python, it might be sufficient to provide a

sensible APl and let them deal with file format issues. Savvy users tend to prefer keeping control
of their data.

On the other hand, if your users aren't programmers and expect an easy-to-use integrated
solution, you may have no other choice than deciding the file format and structure of the data
generated by your software. This was our case. | tried to push hard our users (who are biologists)
to learn Python and regain control of their workflows and data formats, but | failed. This is sad,
as | think that in 2016 any researcher needs to know a programming language, Unix, bash, a
version control system, etc. Still, many researchers continue to be allergic to command-line

interfaces and programming languages, and you might have to comply with their requests.
Maybe the customer is always right.

The HDF Group

SCOPE

. . vA
HDF5 “Project Management Triangle” /... < >
cosT TIME p v Q

Data Model Sponsors
Bugs
Everything is an implementation detail

Don’t get much work done

(Fourth dimension?)

Use Cases

Being near the center is no
guarantee for being useful

Tailored access No pesky format details

DIY library H5Coro DAOS VOL Data’s not going anywhere
File Format Library
°s L=
=~ | Is HDF5 a File Format or an API? /1

W\

4

p—

/ The HDF Group

