
Parallel Compression I/O with
HDF5; Performance Tuning
Techniques
October 25, 2021

M. Scot Breitenfeld
Jordan Henderson

Elena Pourmal

2

Outline

• Overview of compression with HDF5
• Chunking considerations

• Case studies of parallel compression in HDF5

3

Parallel HDF5 Compression

• Relatively new functionality introduced in HDF5 version 1.10.2
• Always seeking feedback on the performance you see in an application

• Limitations
• Doesn’t support independent operations. USE:

• Doesn't yet support linked chunk I/O for reading

plist_id = H5Pcreate(H5P_DATASET_XFER);
H5set_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE);

4

Chunked Storage
Good parallel HDF5 compression performance starts

with good chunked dataset performance.
• Dataset data is divided into equally sized blocks (chunks).
• Each chunk is stored separately as a contiguous block in HDF5

file.

Application memory

Metadata cache
Dataset header

………….
Datatype
Dataspace
………….
Attributes

…

File

Dataset data

A DC Bheader Chunk
index

Chunk
index

A B C D

5

HDF5 Dataset – Chunked Storage

• Chunking is required when using extendibility and/or compression and other filters
• I/O is always performed on a whole chunk
• Understand how chunking cache works

https://portal.hdfgroup.org/display/HDF5/Chunking+in+HDF5 and consider
• Do you access the same chunk often?
• What is the best chunk size (especially when using compression)? NOTE: maximum size for any chunk is

4GB.
• Do you need to adjust chunk cache size? (1 MB default; can be set up per file or per dataset)
• H5Pset_chunk_cache sets raw data chunk cache parameters for a dataset
- H5Pset_chunk_cache (dapl, …);

• H5Pset_cache sets raw data chunk cache parameters for all datasets in a file
- H5Pset_cache (fapl, …);

https://portal.hdfgroup.org/display/HDF5/Chunking+in+HDF5

6

HDF5 Dataset – Chunked Storage (cont’d)
• Cache size is important when doing partial I/O to avoid many I/O

operations
• With the 1 MB cache size, a chunk may not fit into cache

• All writes to the dataset must be immediately written to disk
• With compression, the entire chunk must be read and rewritten every time

a part of the chunk is written to
• Data must also be decompressed and recompressed each time
• Non sequential writes could result in a larger file

• Without compression, the entire chunk must be written when it is first
written to the file.

• To write multiple chunks at once increase the cache size to hold more
chunks

7

HDF5 Parameter Space

7

HDF5 I/O1 test
explores the HDF5
parameter space

1 https://github.com/HDFGroup/hdf5-iotest

https://github.com/HDFGroup/hdf5-iotest

8

IO Pattern Model

Step based IO Pattern

9

IO Pattern Model

Array based IO Pattern

Parallel Compression Case Studies

11

Parallel HDF5 Compression

• Start from best weak
scaling case scenario
from hdf5-iotest on
Summit :

1. Chunked dataset,
2. Collective with no-

alignment,
3. Rank four array,
4. Step,
5. No fill values,
6. Earliest library version

 0.1

 1

 10

 100

 1000Rank 2
Rank 3
Rank 4

time
step

chunked
contiguous

�ll-false
�ll-true

def. align
align

def. metadata
metadata

latest
earliest

collective
independent

more scalable less scalable

Av
er

ag
e T

ot
al

 T
im

e (
s)

12

Parallel HDF5 Compression

• Compressed and
uncompressed file
sizes as the number of
processes are
increased

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 42 84 168 336 672 1344 2688 5376 10752 21504

Fi
les

ize
 (M

iB
)

Number of Ranks

No compression
Compression (gzip)

13

Parallel HDF5 Compression

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 42 84 168 336 672 1344 2688 5376 10752 21504

To
ta

l T
im

e (
s)

Number of Ranks

No compression
Compression (gzip)

Total	time	with	
compression	scales	
proportionally	after	
168	processes

14

Parallel HDF5 Compression

• Weak efficiency
relative to 84
processes

• Using compression
shows improvement
over the non-
compression case

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 168 336 672 1344 2688 5376 10752 21504

W
ea

k
E�

cie
nc

y (
t 84

/t p
)

Number of Ranks

No compression
Compression (gzip)

15

CAUTION: Object Creation and Parallel Compression
(Collective vs. Single Process)

• In sequential mode, HDF5 allocates chunks incrementally, i.e., when data is
written to a chunk for the first time.
• Chunk is also initialized with the default or user-provided fill value.

• In the parallel case, chunks are always allocated when the dataset is created
(not incrementally).
• This can be an issue if dataset pre-created by rank 0
• The more ranks there are, the more chunks need to be allocated and

initialized/written, which manifests itself as a slowdown

16

CAUTION: Object Creation
(SEISM-IO, Blue Waters—NCSA)

Set HDF5 to never fill chunks (H5Pset_fill_time with H5D_FILL_TIME_NEVER)

17

Acknowledgement

This material is based upon work supported by the U.S. Department of Energy,
Office of Science, Office of Basic Energy Sciences under Award Number DE-
AC05-00OR22725.
Disclaimer
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its
use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

THANK YOU!
Questions & Comments?

