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Outline

• Overview of compression with HDF5
• Chunking considerations

• Case studies of parallel compression in HDF5
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Parallel HDF5 Compression

• Relatively new functionality introduced in HDF5 version 1.10.2
• Always seeking feedback on the performance you see in an application

• Limitations
• Doesn’t support independent operations. USE:

• Doesn't yet support linked chunk I/O for reading

plist_id = H5Pcreate(H5P_DATASET_XFER);
H5set_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE);
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Chunked Storage
Good parallel HDF5 compression performance starts 

with good chunked dataset performance.
• Dataset data is divided into equally sized blocks (chunks).
• Each chunk is stored separately as a contiguous block in HDF5 

file.

Application memory

Metadata cache
Dataset header

………….
Datatype
Dataspace
………….
Attributes

…

File

Dataset data

A DC Bheader Chunk
index

Chunk
index

A B C D



5

HDF5 Dataset – Chunked Storage

• Chunking is required when using extendibility and/or compression and other filters
• I/O is always performed on a whole chunk
• Understand how chunking cache works 

https://portal.hdfgroup.org/display/HDF5/Chunking+in+HDF5 and consider
• Do you access the same chunk often?
• What is the best chunk size (especially when using compression)? NOTE: maximum size for any chunk is 

4GB.
• Do you need to adjust chunk cache size? (1 MB default; can be set up per file or per dataset)
• H5Pset_chunk_cache sets raw data chunk cache parameters for a dataset
- H5Pset_chunk_cache (dapl, …);

• H5Pset_cache sets raw data chunk cache parameters for all datasets in a file
- H5Pset_cache (fapl, …);

https://portal.hdfgroup.org/display/HDF5/Chunking+in+HDF5
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HDF5 Dataset – Chunked Storage (cont’d)
• Cache size is  important when doing partial I/O to avoid many I/O 

operations
• With the 1 MB cache size, a chunk may not fit into cache

• All writes to the dataset must be immediately written to disk
• With compression, the entire chunk must be read and rewritten every time 

a part of the chunk is written to
• Data must also be decompressed and recompressed each time
• Non sequential writes could result in a larger file

• Without compression, the entire chunk must be written when it is first 
written to the file.

• To write multiple chunks at once increase the cache size to hold more 
chunks
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HDF5 Parameter Space
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HDF5 I/O1 test 
explores the HDF5 
parameter space

1 https://github.com/HDFGroup/hdf5-iotest

https://github.com/HDFGroup/hdf5-iotest
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IO Pattern Model

Step based IO Pattern
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IO Pattern Model

Array based IO Pattern



Parallel Compression Case Studies
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Parallel HDF5 Compression

• Start from best weak 
scaling case scenario 
from hdf5-iotest on 
Summit :

1. Chunked dataset,
2. Collective with no-

alignment, 
3. Rank four array, 
4. Step, 
5. No fill values, 
6. Earliest library version 
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Parallel HDF5 Compression

• Compressed and 
uncompressed file 
sizes as the number of 
processes are 
increased 
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Parallel HDF5 Compression
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Parallel HDF5 Compression

• Weak efficiency 
relative to 84 
processes

• Using compression 
shows improvement 
over the non-
compression case 
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CAUTION: Object Creation and Parallel Compression
(Collective vs. Single Process)

• In sequential mode, HDF5 allocates chunks incrementally, i.e., when data is 
written to a chunk for the first time.
• Chunk is also initialized with the default or user-provided fill value.

• In the parallel case, chunks are always allocated when the dataset is created 
(not incrementally).
• This can be an issue if dataset pre-created by rank 0
• The more ranks there are, the more chunks need to be allocated and 

initialized/written, which manifests itself as a slowdown
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CAUTION: Object Creation 
(SEISM-IO, Blue Waters—NCSA)

Set HDF5 to never fill chunks (H5Pset_fill_time with H5D_FILL_TIME_NEVER) 
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THANK YOU!
Questions & Comments?


