
Async VOL: Transparent Asynchronous I/O
using Background Threads

Houjun Tang1, Quincey Koziol2, Suren Byna1,
John Mainzer3, Huihuo Zheng4, John Ravi5

1 Berkeley Lab, 2 Amazon, 3 The HDF Group,
4 Argonne National Lab, 5 NC State University

Why Async?

Async

Sync

HDF5 API

…

…

All Other
HDF5
Routines

Pa
ss

-t
h

ro
u

gh
Te

rm
in

al
Virtual
Object
Layer
(VOL)

Operations on a Container

HDF5 Library
Infrastructure

N
at

iv
e

A
sy

n
ch

ro
n

o
u

s

D
A

O
S

R
ES

T

H
er

m
es

C
ac

h
in

g

Tr
ac

in
g

In
d

ep
en

d
en

t
M

et
ad

at
a

C
o

n
n

ec
to

rs

Virtual Object Layer (VOL)

How to use Async VOL
● Preparation

○ HDF5: git clone https://github.com/HDFGroup/hdf5.git
○ Async VOL + Argobots: git clone --recursive https://github.com/hpc-io/vol-async.git

● Installation
○ Compile HDF5 develop branch, with thread-safety support
○ Compile Argobots
○ Compile Async VOL connector

● Set environment variables
○ export LD_LIBRARY_PATH=$VOL_DIR/src:$H5_DIR/lib:$ABT_DIR/lib:$LD_LIBRARY_PATH
○ export HDF5_PLUGIN_PATH="$VOL_DIR/src"
○ export HDF5_VOL_CONNECTOR="async under_vol=0;under_info={}"

4

Spack build coming soon

Detailed instructions: https://hdf5-vol-async.readthedocs.io

https://github.com/HDFGroup/hdf5.git
https://github.com/hpc-io/vol-async.git
https://hdf5-vol-async.readthedocs.io/en/latest/

Implicit and Explicit Asynchronous I/O Execution
● Implicit

○ For unmodified HDF5 applications
○ Can be transparently invoked by setting environment variables
○ Dataset writes and reads always block unless stacking with Cache VOL

● Explicit
○ For applications that want more control of async operations

■ Uses an “event set” to manage async operations
○ Can extract more performance, e.g. enable async read and write

Explicit Control with EventSet API
● Track and inspect multiple I/O operations with an EventSet ID
● Async version of HDF5 APIs

○ H5Fcreate_async(fname, …, es_id)
○ H5Dwrite_async(dset, …, es_id)
○ …

● Event set control
○ H5EScreate()
○ H5ESwait()
○ H5ESclose()

● Error checking
○ H5ESget_err_status()
○ H5ESget_err_info()

6

Converting Existing Code

7

Error Handling
● If an async operation fails, all of its dependent children will not execute

○ If an operation in an event set fails, no further operations can be added to the event set

● An additional error message indicating the parent’s failure is appended to the
error stack:

Async VOL-DIAG: Error detected in Async VOL (0.1) thread 0:
 #000: h5_vol_external_async_native.c line 5766 in async_dataset_create_fn(): Parent task failed

major: Virtual Object Layer
minor: Unable to create file

HDF5-DIAG: Error detected in HDF5 (1.13.0) thread 0:
 #001: ../../src/H5VLcallback.c line 3977 in H5VLgroup_create(): unable to create group

major: Virtual Object Layer
minor: Unable to create file

 #002: ../../src/H5VLcallback.c line 3904 in H5VL__group_create(): group create failed
major: Virtual Object Layer
minor: Unable to create file

 #003: ../../src/H5VLnative_group.c line 72 in H5VL__native_group_create(): unable to create group
major: Symbol table
minor: Unable to initialize object

...

Async VOL with Application Status Detection

● Asynchronous task queue
● Background thread execution

9

Transparent Dependency Management
○ All I/O operations can only be executed after a successful file

create/open.

○ A file close operation can only be executed after all previous
operations in the file have been completed.

○ All read or write operations must be executed after a prior write
operation to the same object.

○ All write operations must be executed after a prior read operation
to the same object.

○ All collective operations must be executed in the same order with
regard to other collective operations.

○ Only one collective operation may be in execution at any time
(among all the threads on a process).

10

Best Practices
● To achieve best performance

○ Application should have sufficient non-I/O time for asynchronous operations to overlap with

● Avoid application status check
○ When application has an I/O phase that writes data to a file, can inform async vol to start execution at

file close time: export HDF5_ASYNC_EXE_FCLOSE=1

● Automatic user buffer management
○ When application has extra memory to spare, async VOL can malloc and memcpy the user’s buffer

when adding -DENABLE_WRITE_MEMCPY=1 at compile time
■ Env variable HDF5_ASYNC_MAX_MEM_MB allows control of memory usage limit
■ Synchronous write when the limit is reached

○ More advanced capabilities available when stacking with Cache VOL
■ Memory and node-local SSD locations for temporary data storage
■ Also support read operations.

Speedup with VPIC-IO and BDCATS-IO on Summit

12

VPIC-IO, 8x32MB write per process, 5 steps total BDCATS-IO, 8x32MB read per process , 5 steps total

Speedup with AMReX Applications on Summit

13

NyX workload, single refinement level,
writes 385GB x 5 steps

Castro workload, single refinement level,
writes 385GB x 5 steps

Future Work
● More real application integration

● Merge compatible operations
○ If two async dataset write operations are putting data into same dataset, can merge into only one call
○ Turn multiple ‘normal’ group create operations into a single ‘multi’ group create operation

● Dynamically setting of tuning parameters
○ HDF5 alignment, collective metadata, deferred flush, etc.
○ MPI-IO hints, collective buffer size/count, etc.
○ File system stripping, Lustre stripe size/count, et.c

● Reduce interference with application’s MPI communications
○ Currently may introduce 2 - 5% overhead

https://github.com/hpc-io/vol-async
https://hdf5-vol-async.readthedocs.io

https://github.com/hpc-io/vol-async
https://hdf5-vol-async.readthedocs.io

Thanks!

Questions?

