
Exploring I/O Traces
with DXT Explorer 

Jean Luca Bez
Lawrence Berkeley National Laboratory

Jean Luca Bez, Houjun Tang, Bing Xie, David Williams-Young,
Rob Latham, Rob Ross, Sarp Oral, and Suren Byna

HDF5 USERS GROUP 2021



Exploring I/O Traces with DXT Explorer | BERKELEY LAB

HPC I/O Stack

● HPC I/O stack is complex (multiple layers)

● Interplay of factors can affect I/O performance

● Various optimizations techniques available

● Plethora of tunable parameters

● Each layer brings a new set of parameters

● Using the all layers efficiently is a tricky problem

Parallel / Serial Applications

High-Level I/O Libraries

POSIX I-O

VFS, FUSE
MPI-IO

I/O Forwarding Layer

Parallel File System

Storage Devices

HDF5, NetCDF, ADIOS

OpenMPI, MPICH
 (ROMIO)

IBM CIOD, Cray DVS, IOFSL, IOF

Lustre, GPFS, PVFS2, OrangeFS

HDD, SSD, RAID

2



Exploring I/O Traces with DXT Explorer | BERKELEY LAB

Darshan and DXT

● Darshan is a popular tool to collect I/O profiling

● It aggregates information to provide insights

● Extended tracing mode (DXT)

● Fine grain view of the I/O behavior

● POSIX or MPI-IO, read/write

● Rank, segment, offset, request size

● Start and end timestamp

● How to visualize and extract insights DXT data?

● Identify I/O bottlenecks

● Hint which optimizations we should apply

3

export DXT_ENABLE_IO_TRACE=1



Exploring I/O Traces with DXT Explorer | BERKELEY LAB

The DXT Explorer Tool

● Darshan can collect fine grain traces with DXT

● No tool to visualize and explore yet

● Static plots have limitations

● Features we seek:

● Observe POSIX and MPI-IO together

● Zoom-in/zoom-out in time and subset of ranks

● Contextual information about I/O calls

● Focus on operation, size, or spatiality

● By visualizing the application behavior, we are one step closer to optimize the application

● There is still a lack of translation from I/O bottlenecks to optimizations

github.com/hpc-io/dxt-explorer

4

docker pull hpcio/dxt-explorer



DEMO
DXT Explorer

5



Exploring I/O Traces with DXT Explorer | BERKELEY LAB

E2E Benchmarks
Baseline

● Cori with 64 compute nodes, 16 ranks per node, and a total of 1024 MPI ranks

● 1024 processes arranged in a 32 x 32 x 16 distribution, total file size is ≈41GB

● 44% of the time is taken by rank 0!

Rank 0 is sequentially writing fill values 
to all of the defined variables (10 in this 

workload), issuing over 40 thousand write 
requests with of ≈1MB

6



Exploring I/O Traces with DXT Explorer | BERKELEY LAB

E2E Benchmarks
Optimized

● Cori with 64 compute nodes, 16 ranks per node, and a total of 1024 MPI ranks

● 1024 processes arranged in a 32 x 32 x 16 distribution, total file size is ≈41GB

● 44% of the time is taken by rank 0!

● Disabling the data filling (NC_NOFILL in NetCDF) translates to 10x speedup 

7

80s

BASELINE

8s

OPTIMIZED

10x



Exploring I/O Traces with DXT Explorer | BERKELEY LAB

Block-cyclic I/O
Baseline

● Cori with 32 compute nodes, 32 ranks per node, and a total of 1024 MPI ranks

● Square matrix with 81250 x 81250 with FP64 data, total of ≈50GB

● Block-cyclic data structures with 128 x 128 with 1024 processes arranged in a 32 x 32 process grid

● Lustre striping, MPI-IO collective buffering, and HDF5 alignment optimizations

8

969s 8h

BASELINE

5s

OPTIMIZED

193x

709s

BASELINE

17s

OPTIMIZED

41xREAD WRITE



Exploring I/O Traces with DXT Explorer | BERKELEY LAB

FLASH-IO
Baseline

● Summit with 64 compute nodes, 6 ranks per node, and a total of 384 MPI ranks

● 2 checkpoint files (≈2.3TB each) and 2 plot file (≈14GB each) both using HDF5 backend

● MPI not issuing collective I/O operations

Looking at the MPI-IO and POSIX levels, 
each rank is writing its own data

9



Exploring I/O Traces with DXT Explorer | BERKELEY LAB

FLASH-IO
Optimized

● Collective I/O using ROMIO hints with 1 agg/node and 16 MB collective buffer size provides 3.2x speedup

● Setting the HDF5 alignment size to 16 MB provides an additional 1.18x speedup

● Deferring the HDF5 metadata flush provides another 1.1x speedup

1495s

BASELINE

361s

OPTIMIZED

4.1x

10



Exploring I/O Traces with DXT Explorer | BERKELEY LAB

Conclusion

● DXT Explorer

● Adds an interactive component to Darshan DXT trace analysis

● Moves a step closer towards connecting the dots between bottleneck detection and tuning

● There is still the need for further R&D

● How can we better report findings to end-users?

● How can we automatically map performance problems to tuning options?

● How can we provide recommendations?

github.com/hpc-io/dxt-explorer

docker pull hpcio/dxt-explorer

11



Exploring I/O Traces
with DXT Explorer 

Jean Luca Bez
jlbez@lbl.gov

Jean Luca Bez, Houjun Tang, Bing Xie, David Williams-Young,
Rob Latham, Rob Ross, Sarp Oral, and Suren Byna

HDF5 USERS GROUP 2021


