

Exploring I/O Traces with DXT Explorer

Jean Luca Bez

Lawrence Berkeley National Laboratory

Jean Luca Bez, Houjun Tang, Bing Xie, David Williams-Young, Rob Latham, Rob Ross, Sarp Oral, and Suren Byna

HDF5 USERS GROUP 2021

HPC I/O Stack

- HPC I/O stack is complex (multiple layers)
- Interplay of factors can affect I/O performance
- Various optimizations techniques available
- Plethora of **tunable parameters**
 - Each layer brings a new set of parameters
- Using the all layers **efficiently** is a **tricky** problem

Darshan and DXT

- Darshan is a popular tool to collect **I/O profiling**
- It **aggregates** information to provide insights
- Extended tracing mode (DXT)

export DXT_ENABLE_IO_TRACE=1

- Fine grain view of the I/O behavior
- POSIX or MPI-IO, read/write
- Rank, segment, offset, request size
- Start and end timestamp
- How to **visualize** and extract insights DXT data?
 - Identify I/O bottlenecks
 - Hint which optimizations we should apply

The DXT Explorer Tool

- Darshan can collect fine grain traces with **DXT**
 - No tool to visualize and explore yet
 - Static plots have **limitations**
- Features we seek:
 - Observe POSIX and MPI-IO together
 - Zoom-in/zoom-out in time and subset of ranks
 - Contextual information about I/O calls
 - Focus on operation, size, or spatiality
- By visualizing the application behavior, we are **one step closer** to optimize the application
- There is still a lack of translation from I/O bottlenecks to optimizations

github.com/hpc-io/dxt-explorer

docker pull hpcio/dxt-explorer

E2E Benchmarks

Baseline

- Cori with 64 compute nodes, 16 ranks per node, and a total of 1024 MPI ranks
 - 1024 processes arranged in a 32 × 32 × 16 distribution, total file size is ≈41GB
- 44% of the time is taken by rank 0!

E2E Benchmarks

Optimized

- Cori with 64 compute nodes, 16 ranks per node, and a total of 1024 MPI ranks
 - 1024 processes arranged in a 32 × 32 × 16 distribution, total file size is ≈41GB
- 44% of the time is taken by rank 0!
- **Disabling** the data filling (NC_NOFILL in NetCDF) translates to **10x** speedup

Block-cyclic I/O Baseline

- Cori with 32 compute nodes, 32 ranks per node, and a total of 1024 MPI ranks
 - Square matrix with 81250 x 81250 with FP64 data, total of ≈50GB
 - Block-cyclic data structures with 128 x 128 with 1024 processes arranged in a 32 x 32 process grid
- Lustre striping, MPI-IO collective buffering, and HDF5 alignment **optimizations**

- Summit with 64 compute nodes, 6 ranks per node, and a total of 384 MPI ranks
 - 2 checkpoint files (≈2.3TB each) and 2 plot file (≈14GB each) both using HDF5 backend
- MPI **not** issuing **collective I/O** operations

- Collective I/O using **ROMIO** hints with 1 agg/node and 16 MB collective **buffer size** provides **3.2x** speedup
- Setting the HDF5 **alignment** size to 16 MB provides an additional **1.18**× speedup
- **Deferring** the HDF5 metadata flush provides another **1.1x** speedup

Conclusion

• DXT Explorer

- Adds an **interactive** component to **Darshan DXT** trace analysis
- Moves a step closer towards connecting the dots between bottleneck detection and tuning
- There is still the need for **further R&D**
 - How can we **better report** findings to end-users?
 - How can we **automatically map** performance problems to tuning options?
 - How can we provide **recommendations**?

docker pull hpcio/dxt-explorer

github.com/hpc-io/dxt-explorer

Exploring I/O Traces with DXT Explorer

Jean Luca Bez jlbez@lbl.gov

Jean Luca Bez, Houjun Tang, Bing Xie, David Williams-Young, Rob Latham, Rob Ross, Sarp Oral, and Suren Byna

HDF5 USERS GROUP 2021

