
Proprietary and Confidential. Copyright 2018, The HDF Group.

HSDS New Features:
AWS Lambda and Direct Access

John Readey

2

• HSDS Overview
• HSDS Serverless with AWS Lambda

• HSDS Serverless with Direct Access

• Performance Comparison

Overview

3

HSDS – Highly Scalable Data Service -- is a REST-based web service for HDF
data

Design criteria:

• Performant – good to great performance
• Scalable – Run across multiple cores and/or clusters

• Feature complete – Support (most) of the features provided by the HDF5 library
• Utilize POSIX or object storage (e.g. AWS S3, Azure Blob Storage)

HDF as a Service - HSDS

Note: HSDS was originally developed as a NASA ACCESS 2015
project: https://earthdata.nasa.gov/esds/competitive-
programs/access/hsds

https://earthdata.nasa.gov/esds/competitive-programs/access/hsds

4HSDS Architecture

Legend:
• Client: Any user of the service
• Load balancer – distributes requests to Service nodes
• Service Nodes – processes requests from clients (with help from Data Nodes)
• Data Nodes – responsible for partition of Object Store
• Object Store: Base storage service (e.g. AWS S3 or Posix Disk)

5HSDS Platforms

POSIX
Filesystem

HSDS is implemented as a set of containers and can be run on
common container management systems (both cloud & on-prem):

Using different supported storage systems:

6Pros and cons of running a service

• Accessing a sharded data store via a service (HSDS) is great:
• Server mediates access to the storage system
• Server can speed things up by caching recently accessed data
• Minimizes data I/O between client & server (e.g. remote clients)
• HSDS running on a large server or cluster can provide more processing capacity and

memory than a client might have
• HSDS serves as a synchronization point for multi-writer/multi-reader algorithms

• Unless it’s not:
• Don’t want to bother setting up, running service
• Challenge to scale capacity of service to clients
• Cloud charges for running server 24/7

7

• HSDS now provide two new (though related) capabilities:

• AWS Lambda support - HSDS implemented as a Lambda Function

• Direct Access Model – HSDS implemented entirely on the client

• Both of these enable developers to take advantage of HSDS capabilities without the
need to run a server

HSDS sans Service

$ hsinfo –e {lambda_dns}
server name: HSDS on AWS Lambda
server state: READY
endpoint: https://vpv89pff5.execute-api.us-west-
2.amazonaws.com
username: hslambda
password: ******
home: NO ACCESS
server version: 0.7.0beta
node count: 1
up: 2 sec
h5pyd version: 0.9.0

Example hsinfo cmd:

8AWS Lambda

• AWS Lambda is an AWS service that enables function to be executed on demand
without the need to provision any infrastructure

• Price (with 1GB memory) is: $0.0000000167/ms
• Beyond potential cost savings, Lambda enables “infinite elasticity”
• Can support widely varying workloads without need to spin up/down servers
• By default, 1000 instances of a function can be run simultaneously

• No infrastructure management required
• i.e. os patches, server backup, monitoring, etc.

• Clients can invoke Lambda directly are utilize AWS API Gateway
• API Gateway provides the same REST API as HSDS

9AWS Lambda Challenges

• Adapting existing container-based server to run on Lambda is not trivial…
• Software needs to initialize as quickly as possible (to minimize latency)

• Unable to take advantage of caching

• Limited to max 6 VCPUs per function
• Lambda runtime environment is restricted:

• No equivalent to docker to manage multiple containers
• TCP not allowed (which is how HSDS containers talk to each other)

• Shared memory not allowed

10

AWS Container Registry
Service (ACR)

Payload Lambda entry
point

SN
subprocess

DN1
subprocess

DN2
subprocess

DN3
subprocess

Result

1. Image loaded

2. Subprocesses run

3. Payload unpacked

4. HTTP/socket request
sent to SN

5. SN multiplex req to
DN nodes

6. DN reads/write
to/from S3 bucket

7. DN returns response
to SN

8. SN returns response
to parent process

9. Result packed to
Lambda result

10. Lambda exits

Container image load

Payload unpacked

HTTP/socket request

HTTP/socket requests

S3 requests

Result returned

HSDS with Lambda Architecture

OCI
Image

11HSDS Lambda Design

• To minimize the need for special purpose code, HSDS is implemented on Lambda as
follows:

• On startup SN node and DN nodes are run as sub-processes (vs containers)

• Number of DN nodes based on available VCPUs
• Nodes communicate via Unix Domain sockets (vs TCP)

• Payload is unpacked to a HTTP request and sent to the SN node
• SN node distributes work over DN nodes

• DN nodes read/write to S3, return result to SN node

• Response is returned as the Lambda result

12HSDS Lambda Performance Constraints

• Compared with HSDS running on a dedicated server, the response time will be 2-100x
slower

• Performance challenges:

• 2-4 seconds for a ”cold” function to startup
• ~0.5 seconds for HSDS code to initialize

• All data must be fetched from S3 (no cache to utilize)
• Limited number of cores (number of DN nodes) available

13HSDS Direct Access

• HSDS Direct Access enables client code to incorporate HSDS functionality without the
need of a server

• As with HSDS Lambda, enables “serverless” operation

• Direct Access is best used for applications that run “close” to the storage and don’t
require close multi-client synchronization

• To use, just set endpoint to local. E.g:
$ hsinfo --endpoint local
server name: Direct Connect (HSDS)
server state: READY
endpoint: local
username: jreadey@hdfgroup.org
password: ********************************
server version: 0.7.0beta
node count: 6
up: 3 sec
h5pyd version: 0.9.0

14HSDS Direct Access Architecture
As with HSDS Lambda:
• SN code would run in a sub-process
• DN code would run in one or more sub-processes (e.g.

based on number of cores)
• Communication between parent processes and sub-

processes would be via Unix Domain sockets
• Sub-processes shutdown when last file is closed
But all code executes on local system

Otherwise, the application will function in same manner as with
server

Note: application needs to have authority to access storage
system (AWS S3, Azure Blob, Posix Disk, etc.)

15Direct Access Architecture

All green boxes run as
processes on client system

S3, Azure Blob, or Posix
storage

Number of DN nodes is set
to number of cores

16Benchmark Shootout!

• Let’s compare performance among different approaches for a typical task
• The Challenge: read one column from a NREL NSRDB dataset
• The file: s3://nrel-pds-nsrdb/v3/nsrdb_2000.h5, ~1.5TB
• The dataset: ”wind_speed” – dimensions: (17568, 2018392), ~66GB
• Choose column index between 0 and 17567 randomly (to discount any caching effects)
• The dataset is chunked in such a way that reading one column requires accessing 5425

chunks or ~10GB of data

Disclaimer: Performance depends greatly on how the
data is organized, system hardware, application code,
phase of the moon, etc. YMMV!

17Contenders

• HDF5 Library reading from Posix Disk
• HDF5 Library w/ ros3 VFD, reading from S3

• HSDS on Docker

• HSDS on Kubernetes with 4 machine cluster
• HSDS with Direct Connect

• HSDS with Lambda

18Hardware

• For Kubernetes:
• AWS m4.2xlarge – 1 to 16 machines in cluster
• 32 GB Ram
• 8 VCPU (VCPU ~= Intel hyperthreading cores)
• “High” networking

• Everything Else:
• AWS m5.8xlarge
• 128 GB Ram
• 16 VCPU
• 10 Gb networking

• Both running in same region as S3 Bucket with NREL data

19The code

• Source code for the test is here:
https://github.com/HDFGroup/hsds/blob/master/tests/perf/nsrdb/nsrdb_test.py

• Usage: python nsrdb_test.py –option

• Where --option is one of:
• --hdf5: use HDF5 library with Posix File

• --ros3: Use HDF5 library S3 VFD, S3 file
• --hsds: Use HSDS

• For HSDS, Direct Access vs. Lambda vs. Docker vs Kubernetes determined by which

endpoint is used

https://github.com/HDFGroup/hsds/blob/master/tests/perf/nsrdb/nsrdb_test.py

20Results

Contestent Time (seconds) Throughput (MB/s) Notes
HDF5 Lib 80 135 +2 hour penalty for copying from S3
HDF5 Lib w/ros3 328 33 Performance would improve w/ Paged Allocation
HSDS Docker 16 node 16 678 HSDS Config override*
HSDS Kubernetes 16 node 28 387 HSDS Config override*
HSDS direct connect 19 571 Using 16 DN sub-processes
HSDS Lambda DNF 500 errors running test

HSDS Config Overrides*:
• max_task_count: 400
• max_chunks_per_request: 6000
These improve performance in situations
like this with a few clients and relatively
large requests

Conclusions:
• HDF5 Library penalized by having to read

each chunk sequentially
• Using HDF5 lib with S3 VFD is slow, but

requires no setup (performance
improvements coming)

• Direct Connect performance similar to using
service

• HSDS Lambda not yet ready for handling
large requests

21Scaling up HSDS

HSDS on Docker Time (seconds) Throughput (MB/s) Notes
1 node 105 103
2 nodes 56 193
4 nodes 32 339
8 nodes 23 471 HSDS Config override
16 nodes 16 678 HSDS Config override

Conclusions:
• Performance scales fairly well as number of nodes

increases
• Not advisable to run more nodes than CPU cores
• (Not shown) performance with Posix rotating disk did not

scale at all
• At some point performance will be network bandwidth

limited
• (Not shown) performance with Direct Connect or

Kubernetes scaled similarly

22Scaling up HSDS by number of clients

• In the previous slide we added more nodes but had just one client sending requests
• How does HSDS perform if we have more clients sending smaller requests?
• HSDS keeps track of number of inflight requests per node and responds with a 503

(Server too Busy) error when that is exceeded
• Polite clients will back off a bit when they see of 503 response
• The nsrdb_async test can simulate an arbitrary number of clients sending requests

continuously to server
• How many tasks can we run for a given number of HSDS nodes?
• You can find code for the test here:
https://github.com/HDFGroup/hsds/blob/master/tests/perf/nsrdb/nsrdb_async.py

https://github.com/HDFGroup/hsds/blob/master/tests/perf/nsrdb/nsrdb_async.py%60

23Number of Clients - Results

Conclusions:
• Number of clients scales linearly with number of nodes
• Performance will degrade if server is over-subscribed
• Kubernetes (not shown) performed similarly
• Lambda or Direct connect has benefit of not requiring matching scaling of client/server

HSDS on Docker Task Count Success rate Notes
4 nodes 10 100%
4 nodes 12 94%
8 nodes 20 100%
8 nodes 25 98% HSDS Config override
8 nodes 30 83% “
16 nodes 40 100% “
16 nodes 50 98% “
16 nodes 79 85% “

24Next Steps

• More work is needed for AWS Lambda to improve performance
• Example: currently it sends data in JSON rather than as binary

• Simply config settings needed for Direct Connect (e.g. ROOT_DIR)
• Remove requirement to extract meta for HDF5 with “hsload –-link”
• Instead acquire dynamically when file is accessed

• Adding Direct Connect functionality as a VOL for C/C++ clients
• Support Azure Functions (Azure’s version of AWS Lambda)
• Streaming support – process data as bytes are received. Benefits;
• Remove limit on size of requests
• Lower latency
• Reduce memory pressure

25Try it out!

Get the software here:

• HSDS: https://github.com/HDFGroup/hsds
• H5pyd: https://github.com/HDFGroup/h5pyd
• REST VOL: https://github.com/HDFGroup/vol-rest
• REST API documentation:

https://github.com/HDFGroup/hdf-rest-api
• Example programs:

https://github.com/HDFGroup/hdflab_examples

https://github.com/HDFGroup/hsds
https://github.com/HDFGroup/h5pyd
https://github.com/HDFGroup/vol-rest
file:///mybuckets/hdf5/data/nrel/windspeed_80m-2008-01.h5
https://github.com/HDFGroup/hdflab_examples

26Questions?

