I HSDS New Features:
AWS Lambda and Direct Access

John Readey

el Nl

INL’1
The HDF Group

Proprietary and Confidential. Copyright 2018, The HDF Group.

. Lt
Overview . O
The HDF Group

HSDS Overview
HSDS Serverless with AWS Lambda
HSDS Serverless with Direct Access

Performance Comparison

HDF as a Service - HSDS o ©

The HDF Group

HSDS — Highly Scalable Data Service -- is a REST-based web service for HDF
data
Design criteria:
Performant — good to great performance
Scalable — Run across multiple cores and/or clusters
Feature complete — Support (most) of the features provided by the HDF5 library
Utilize POSIX or object storage (e.g. AWS S3, Azure Blob Storage)

Note: HSDS was originally developed as a NASA ACCESS 2015
project: https://earthdata.nasa.gov/esds/competitive-
programs/access/hsds

https://earthdata.nasa.gov/esds/competitive-programs/access/hsds

HSDS Architecture o
The HDF Group

Object Store

g

Client

00

/

D
Z

« Client: Any user of the service

« Load balancer — distributes requests to Service nodes

« Service Nodes — processes reguests from clients (with help from Data Nodes)
« Data Nodes — responsible for partition of Object Store

* (Object Store: Base storage service (e.g. AWS S3 or Posix Disk)

HSDS Platforms = O

The HDF Group

HSDS is implemented as a set of containers and can be run on
common container management systems (both cloud & on-prem):

uf_juf
(p0p0p
docker kubernetes [[[]. [[[].

Using different supported storage systems:

— ;._,-:'-'a"mazon |S3 Microsoft Azure 10 (D (v)
. ' " webservices™ Blob Storage
1 OpenlO
. ceph
POSIX

Filesystem

. . T
Pros and cons of running a service 1 O
The HDF Group

- Accessing a sharded data store via a service (HSDS) is great:
. Server mediates access to the storage system
. Server can speed things up by caching recently accessed data
- Minimizes data I/O between client & server (e.g. remote clients)
- HSDS running on a large server or cluster can provide more processing capacity and
memory than a client might have
. HSDS serves as a synchronization point for multi-writer/multi-reader algorithms
- Unless it’s not:
- Don’t want to bother setting up, running service
- Challenge to scale capacity of service to clients

. Cloud charges for running server 24/7

. LN\
HSDS sans Service w1 O
The HDF Group

- HSDS now provide two new (though related) capabilities:
- AWS Lambda support - HSDS implemented as a Lambda Function

- Direct Access Model — HSDS implemented entirely on the client

- Both of these enable developers to take advantage of HSDS capabilities without the

Example hsinfo cmd:

$ hsinfo —e {lambda_dns}

server name: HSDS on AWS Lambda
server state: READY

endpoint: https://vpv89pfts.execute-api.us-west-
2.amazonaws.com

username: hslambda

password: **F

home: NO ACCESS

server version: 0.7.0beta

node count: 1

up: 2 sec

hSpyd version: 0.9.0

need to run a server

AWS Lambda . O

The HDF Group

- AWS Lambda is an AWS service that enables function to be executed on demand
without the need to provision any infrastructure
. Price (with 1GB memory) is: $0.0000000167/ms
- Beyond potential cost savings, Lambda enables “infinite elasticity”
- Can support widely varying workloads without need to spin up/down servers
- By default, 1000 instances of a function can be run simultaneously
- No infrastructure management required
- 1.e. 0S patches, server backup, monitoring, etc.
- Clients can invoke Lambda directly are utilize AWS AP| Gateway
- APl Gateway provides the same REST APIl as HSDS

AWS Lambda Challenges . O

The HDF Group

- Adapting existing container-based server to run on Lambda is not trivial...
. Software needs to initialize as quickly as possible (to minimize latency)
- Unable to take advantage of caching
- Limited to max 6 VCPUs per function
- Lambda runtime environment is restricted:
- No equivalent to docker to manage multiple containers
- TCP not allowed (which is how HSDS containers talk to each other)

- Shared memory not allowed

HSDS with Lambda Architecture 1 @

The HDF Group
Payload unpacked . Result returned
HTTP/socket request
Container image load

1. Image loadea
2. Subprocesses run
3. Payload unpacked

4. HTTP/socket request
sent to SN

HTTP/socket requests

5. SN multiplex reqg to

DN nodes

6. DN reads/write
OCl to/from S3 bucket
Image 7. DN returns response

to SN

8. SN returns response

S3 requests
{0 parent process

9. Result packed to
Lambda result

AWS Container Registry

Service (ACR) 10. Lambda exits

HSDS Lambda Design . @

The HDF Group

- To minimize the need for special purpose code, HSDS is implemented on Lambda as
follows:
- On startup SN node and DN nodes are run as sub-processes (vs containers)
- Number of DN nodes based on available VCPUs
- Nodes communicate via Unix Domain sockets (vs TCP)
- Payload is unpacked to a HTTP request and sent to the SN node
- SN node distributes work over DN nodes
.- DN nodes read/write to S3, return result to SN node

- Response is returned as the Lambda result

HSDS Lambda Performance Constraints Thrm':l'l)ﬁ; @
e roup

- Compared with HSDS running on a dedicated server, the response time will be 2-100x
slower
- Performance challenges:
. 2-4 seconds for a "cold” function to startup
. ~0.5 seconds for HSDS code to initialize
. All data must be fetched from S3 (no cache to utilize)

- Limited number of cores (number of DN nodes) available

. N
HSDS Direct Access . ©®
The HDF Group

- HSDS Direct Access enables client code to incorporate HSDS functionality without the

need of a server
. As with HSDS Lambda, enables “serverless” operation

- Direct Access is best used for applications that run “close” to the storage and don't

require close multi-client synchronization

. . $ hsinfo --endpoint local
- To use, just set endpoint to local. E.g: server name: Direct Connect (HSDS)

server state: READY

endpoint: local

username: jreadey@hdfgroup.org
DASSWOI: FFHFFRFrkR R R KRR KRR R
server version: 0.7.0beta

node count: 6

up: 3 sec

hSpyd version: 0.9.0

HSDS Direct Access Architecture - @
As with HSDS Lambda:
« SN code would run in a sub-process
* DN code would run in one or more sub-processes (e.g.
based on number of cores)
« Communication between parent processes and sub-
processes would be via Unix Domain sockets
» Sub-processes shutdown when last file is closed
But all code executes on local system

Otherwise, the application will function in same manner as with
server

Note: application needs to have authority to access storage
system (AWS S3, Azure Blob, Posix Disk, etc.)

. . et N
Direct Access Architecture o @
The HDF Group

Number of DN nodes Is set
to number of cores

h5pyd

m‘

All green boxes run as S3, Azure Blob, or Posix
processes on client system storage

N
Benchmark Shootout! w1 ©
The HDF Group

. Let’s compare performance among different approaches for a typical task
- The Challenge: read one column from a NREL NSRDB dataset
- The file: s3://nrel-pds-nsrdb/v3/nsrdb_2000.h5, ~1.5TB
- The dataset: "wind_speed” — dimensions: (17568, 2018392), ~66GB
- Choose column index between 0 and 17567 randomly (to discount any caching effects)

- The dataset is chunked in such a way that reading one column requires accessing 5425
chunks or ~10GB of data

Disclaimer: Pertormance depends greatly on how the
data is organized, system hardware, application code,
ohase of the moon, etc. YMMV!

N
Contenders b @O
The HDF Group

- HDF5 Library reading from Posix Disk

- HDF5 Library w/ ros3 VFD, reading from S3
- HSDS on Docker

- HSDS on Kubernetes with 4 machine cluster
- HSDS with Direct Connect

. HSDS with Lambda

N —
Hardware b ©
The HDF Group

- For Kubernetes:
- AWS m4.2xlarge — 1 to 16 machines in cluster
- 32 GB Ram
- 8 VCPU (VCPU ~= Intel hyperthreading cores)
- “High” networking
- Everything Else:
- AWS mb5.8xlarge
- 128 GB Ram
- 16 VCPU
- 10 Gb networking
- Both running in same region as S3 Bucket with NREL data

N —
The code b ©
The HDF Group

. Source code for the test is here:

https://github.com/HDFGroup/hsds/blob/master/tests/pert/nsrdb/nsrdb test.py
- Usage: python nsrdb_test.py —option
- Where --option is one of:
- --hdf5: use HDF5 library with Posix File
. --r0s3: Use HDF5 library S3 VFD, S3 file
. --hsds: Use HSDS
- For HSDS, Direct Access vs. Lambda vs. Docker vs Kubernetes determined by which

endpoint is used

https://github.com/HDFGroup/hsds/blob/master/tests/perf/nsrdb/nsrdb_test.py

Results

N L/1
The HDF Group

I_I'\.=@

Contestent Time (seconds) Throughput (MB/s)

+2 hour penalty for copying from S3

DFE5 Lib 135

DF5 Lib w/ros3 328 33

SDS Docker 16 node 16 678

SDS Kubernetes 16 node 28 387

SDS direct connect 19 571

SDS Lambda DNF
Conclusions:

 HDF5 Library penalized by having to read
each chunk sequentially
» Using HDF5 lib with S3 VED is slow, but

requires no setup (performance

improvements coming)

» Direct Connect performance similar to using
service

* HS

DS Lambda not yet ready for handling

larqae reqgluests

\J

Performance would improve w/ Paged Allocation

SDS Config override®
SDS Config override®
sing 16 DN sub-processes

500 errors running test

HSDS Config Overrides™:

* max_task_count: 400

* max_chunks_per_request: 6000
These improve performance in situations
Ike this with a few clients and relatively
large requests

Scaling up HSDS o @

The HDF Group

HSDS on Docker Time (seconds) | Throughput (MB/s)

1 node 105 103

2 Nodes 56 193
4 nodes 32 339
8 nodes 23 471 SDS Config override
16 nodes 16 678 SDS Config override
Conclusions:
» Performance scales tairly well as number of nodes
INncreases
« Not advisable to run more nodes than CPU cores

» (Not shown) performance with Posix rotating disk did not

scale at all
» At some point performance will be network bandwidth

limited
* (Not shown) performance with Direct Connect or
Kubernetes scaled similarly

Scaling up HSDS by number of clients Thm':l'ljﬁ; 22
e roup

- In the previous slide we added more nodes but had just one client sending requests

- How does HSDS perform if we have more clients sending smaller requests?

- HSDS keeps track of number of inflight requests per node and responds with a 503
(Server too Busy) error when that is exceeded

- Polite clients will back off a bit when they see of 503 response

- The nsrdb_async test can simulate an arbitrary number of clients sending requests
continuously to server

- How many tasks can we run for a given number of HSDS nodes?

- You can find code for the test here:

https://github.com/HDFGroup/hsds/blob/master/tests/perf/nsrdb/nsrdb async.py

https://github.com/HDFGroup/hsds/blob/master/tests/perf/nsrdb/nsrdb_async.py%60

Number of Clients - Results o @
The HDF Group

4 nodes 100%

4 nodes 12 94%

8 nodes 20 100%

8 nodes 25 98% HSDS Config override

8 nodes 30 83% -

16 nodes 40 100% -

16 nodes 50 98% -

16 nodes 79 85% -

Conclusions:

- Number of clients scales linearly with number of nodes

- Performance will degrade if server is over-subscribed

- Kubernetes (not shown) performed similarly

- Lambda or Direct connect has benefit of not requiring matching scaling of client/server

N
Next Steps ra &
The HDF Group

- More work is needed for AWS Lambda to improve performance
.- Example: currently it sends data in JSON rather than as binary
. Simply config settings needed for Direct Connect (e.g. ROOT_DIR)
- Remove requirement to extract meta for HDF5 with “hsload —link”
- Instead acquire dynamically when file is accessed
- Adding Direct Connect functionality as a VOL for C/C++ clients
. Support Azure Functions (Azure’s version of AWS Lambda)
. Streaming support — process data as bytes are received. Benefits;
- Remove limit on size of requests
- Lower latency
- Reduce memory pressure

Try it out! ./l
The HDF Group

et the software here:

« HSDS: https://github.com/HDFGroup/hsds

» Hb5pyd: https://github.com/HDFGroup/hSpyd

 REST VOL: https://github.com/HDFGroup/vol-rest

 REST APl documentation:
hitps://qgithub.com/HDFGroup/hdi-rest-api

* Example programs:
https://github.com/HDFGroup/hdflab_examples

https://github.com/HDFGroup/hsds
https://github.com/HDFGroup/h5pyd
https://github.com/HDFGroup/vol-rest
file:///mybuckets/hdf5/data/nrel/windspeed_80m-2008-01.h5
https://github.com/HDFGroup/hdflab_examples

. L =
Questions? r ®
The HDF Group

