Predicting and optimizing the

performance of HDF5 applications

Donghe Kang
kang.1002@osu.edu

THE OHIO STATE
UNIVERSITY

Software stack

* Previous modeling work

Application
POSIX I/O

Applications directly access data. Previous

works build models to predict the I/0O time.

Optimize

 This work

Application
HDF5

POSIX I/0

How to predict the end-to-end performance
of the array I/O requests?

: :
Motivation

* Read an entire array

B Memory copy Data server access

Dimension 2 - 250

S [ST 5 T 200
=i)
RS O
—i P ()]

< = 150
o Load T @
2) - :
cC T e et W R S I A W -> B

) N Sy
£ Sk =
& L o

Pl ¥ 50

Eaiens e N & l
36M . o =
1 4 16 64
Chunked on-disk In-memory serial buffer Chunk length in Dim 2

storage layout

Read path in HDF5

Selected region and data buffer

Locate chunks in the region

Next chunk

Read from data servers

' I

Memcpy data from the library
cache to data buffer

Complete

Read from file _

system cache

The cache read and memory copy
operations can spend up to 90% and 87%
of the execution time in our experiments.

An end-to-end model should cover all the
steps in the 1/O path.

End-to-end time =

» cache read time +

Solution overview

System parameters

|

Selected Variable Cache
. —’ .
region calculation state

Linear regression
model

l

Predicted
time

 The system parameters
— the chunk shape
— storage format (HDF5 or Zarr)
— stripe count and size in the file system
— cache ssize

* The solution contains three components

— The cache state component maintains the

status of the library cache and the file system
cache

— The variable calculation component computes
the variables in the model based on the
selected region

— The model component predicts the cache read
time, data server access time and memory
copy time

Model accuracy

Experiment variables

e HDF5 e Zarr ----Perfect prediction
" L d Array shape 36MXx64, 24K X2K X3K
g v-* Selected region entire array, 1K rows, 1 column, 1K boxes
0 Chunk length inDim1 70K - 4.5M
E o Chunk length in Dim 2 1-64
= 10 ¢ .
S y,x o Number of processes 1-64
=] [] ’
g . . j-' Stripe count 1-64
0 File system Lustre, GPFS
01 -~
0.1 1 10 100 1000 10000 e Ta keaways:

Predicted time (seconds)

— The RMSE of the model is 0.29

Real and predicted time — The model correctly predicts the fastest library
between HDF5 and Zarr 94% of the time.

Small array challenge

e Supernova detection

b8 e Segment CNN

> Real or bogus?

21X21 pixels/image

Small array challenge

e Vortices prediction
— 8KB/vortex

Y

Identify vortices | % 3D query

N\
t —> f)
¥,

Small array challenge

* One I/O per array
— 1/0 takes 200X to 700X longer than computation

TG00 e
m Compute m1/0

1000 Applical‘ion
% s Array management library
E One I/O request

er arra
= p y
File system
1

HadoopFS Lustre
File system

Small array challenge

Too many small I/O requests!

HDF5 on heterogeneous data stores

Application

Henosis

TileDB

HadoopFS

Locally attached disks

11

Goals

e Store arrays on heterogeneous data stores
— Without modifying applications
e Accelerate small I/O requests

— Placement = improve the performance of one request
— Consolidation = reduce the number of requests

 Automatically decide the array storage layout
— Which data store should an array be placed in?
— How do we store small arrays in chunks?

12

(Goals

e Store arrays on heterogeneous data stores
— Without modifying applications
e Accelerate small I/O requests

— Placement = improve the performance of one request
— Consolidation = reduce the number of requests

 Automatically decide the array storage layout
— Which data store should an array be placed in?
— How do we store small arrays in chunks?

13

.
System architecture

Application

HDFS « ¢ File system

Virtual Object Layer

/O Interceptor Storage Tuner

Redis Driver | get TileDB Driver Henosis

TileDB

HadoopFS

14

(Goals

e Store arrays on heterogeneous data stores
— Without modifying applications
* Accelerate small I/O requests

— Placement = improve the performance of one request
— Consolidation = reduce the number of requests

 Automatically decide the array storage layout
— Which data store should an array be placed in?
— How do we store small arrays in chunks?

15

Placement
Process1 Process 2
P :;;—-1: —————— =
d \
d; d) (ds da | ,|3as dg
\\ h \\ ” g ’/

Redis TileDB

I/0 acceleration techniques

7

Consolidation

Process 1 Process 2
i % | S &
I|la a a a a ac | Y
\\ 1 2 3 Q 4 5 5
~ // \\ //

\~———’ S o &

Chunk 1 Chunk 2

16

(Goals

e Store arrays on heterogeneous data stores
— Without modifying applications
e Accelerate small I/O requests

— Placement = improve the performance of one request
— Consolidation = reduce the number of requests

* Automatically decide the array storage layout
— Which data store should an array be placed in?
— How do we store small arrays in chunks?

17

Optimization workflow

Henosis observes access pattern Storage plan 5,

Optimization Analytical cost model

Access pattern

Storage plan

18

Optimization impact

N W W b
buu O U1 O

Execution time (seconds)
e S
o o o

o U

Vortice prediction
397

Small arrays

Consolidation

Consolidation and
placement

Directly read many small arrays from HadoopFS

Consolidate small arrays with same access pattern

in a chunk. Read in fewer I/O requests.

Place hot arrays and co-accessed arrays in Redis.
Read less data from HadoopFS.

19

Conclusions

e Reading from cache and memory copy to transform layouts can spend
90% of the execution time
— An end-to-end model to cover the entire I/O path

* Applications spend 99% of the time to read small arrays

— VOL transparently forward requests to two data stores

— Placement and consolidation reduce the number of I/O requests to the slow data
store

— An analytical cost model helps to decide the storage layout

Personal webpage: https://web.cse.ohio-state.edu/~kang.1002/ 20

https://web.cse.ohio-state.edu/~kang.1002/

