
Predicting and optimizing the 
performance of HDF5 applications

Donghe Kang
kang.1002@osu.edu



Software stack
• Previous modeling work • This work

2

Applica'ons directly access data. Previous 
works build models to predict the I/O 'me. 

HDF5

Applica+on

File system
MPI I/O

How to predict the end-to-end performance 
of the array I/O requests?

POSIX I/O
Applica+on

File system
MPI I/O POSIX I/O

Predict Op*mize



Motivation
• Read an en+re array

3

0

50

100

150

200

250

1 4 16 64

Ex
ec

u&
on

 &
m

e 
(s

ec
on

d)

Chunk length in Dim 2

Memory copy Data server access
Dimension 2

Di
m

en
sio

n 
1

Chunked on-disk 
storage layout

Load

64

36M

In-memory serial buffer

Predict Op*mize



Read path in HDF5

4

Selected region and data buffer

Locate chunks in the region

Next chunk Complete

Hit in the 
library cache

Hit in the file 
system cache

Memcpy data from the library
cache to data buffer

Read from file 
system cache

Read from data servers

N

Y

N

N

Y

Y

The cache read and memory copy 
opera.ons can spend up to 90% and 87%
of the execu.on .me in our experiments. 

An end-to-end model should cover all the 
steps in the I/O path.

End-to-end .me = 
cache read .me +
data server access .me +
memory copy .me

Predict Op*mize



Solution overview
• The system parameters

– the chunk shape
– storage format (HDF5 or Zarr)
– stripe count and size in the file system
– cache size

• The solu'on contains three components
– The cache state component maintains the 

status of the library cache and the file system 
cache

– The variable calculaEon component computes 
the variables in the model based on the 
selected region

– The model component predicts the cache read 
Eme, data server access Eme and memory 
copy Eme

5

Selected
region

Variable
calculaEon

System parameters

Cache
state

Linear regression 
model

Predicted
Eme

Predict Op*mize



Model accuracy

• Takeaways:
– The RMSE of the model is 0.29
– The model correctly predicts the fastest library 

between HDF5 and Zarr 94% of the 'me.
6

Real and predicted Eme

Variable Value range
Array shape 36𝑀×64, 2.4𝐾×2𝐾×3𝐾
Selected region entire array, 1K rows, 1 column, 1K boxes

Chunk length in Dim 1 70K - 4.5M

Chunk length in Dim 2 1 - 64

Number of processes 1 - 64

Stripe count 1 - 64

File system Lustre, GPFS

Experiment variables

0.1

1

10

100

1000

10000

0.1 1 10 100 1000 10000

Ex
ec

ut
io

n 
tim

e 
(s

ec
on

ds
)

Predicted 9me (seconds)

HDF5 Zarr Perfect prediction

Predict Op*mize



Small array challenge

7

Segment CNN
Real or bogus?

21⨉21 pixels/image

• Supernova detec+on

Predict Optimize



Small array challenge
• Vor+ces predic+on
– 8KB/vortex

t1

t2

t1

t2

Iden.fy vor.ces
V1

V2

3D query
V1 = V2

X

Y

8

Predict Optimize



• One I/O per array
– I/O takes 200⨉ to 700⨉ longer than computa.on

Small array challenge

9

Array management library

Applica.on

File system

One I/O request
per array

2 2

1413

394

1

10

100

1000

10000

HadoopFS Lustre

Ti
m

e 
(s

)

File system

Compute I/O

Predict Op*mize



Small array challenge

10

Too many small I/O requests!

Predict Op*mize



HDF5 on heterogeneous data stores

11

HDF5
Applica.on

Data stores

TileDB

HadoopFS

Redis

Main memory storage

File system
Henosis

Locally aXached disks

Predict Op*mize



Goals
• Store arrays on heterogeneous data stores
– Without modifying applications

• Accelerate small I/O requests
– Placement à improve the performance of one request
– Consolidation à reduce the number of requests

• Automatically decide the array storage layout
– Which data store should an array be placed in?
– How do we store small arrays in chunks?

12

Predict Optimize



Goals
• Store arrays on heterogeneous data stores
– Without modifying applications

• Accelerate small I/O requests
– Placement à improve the performance of one request
– Consolidation à reduce the number of requests

• Automatically decide the array storage layout
– Which data store should an array be placed in?
– How do we store small arrays in chunks?

13

Predict Optimize



HDF5

I/O Interceptor

Redis Driver TileDB Driver

TileDB
HadoopFS

Redis

Storage Tuner

Henosis

Application

Virtual Object Layer
File system

read

get

System architecture

14

Predict Optimize



Goals
• Store arrays on heterogeneous data stores
– Without modifying applica.ons

• Accelerate small I/O requests
– Placement à improve the performance of one request
– Consolida9on à reduce the number of requests

• Automa+cally decide the array storage layout
– Which data store should an array be placed in?
– How do we store small arrays in chunks?

15

Predict Optimize



I/O acceleration techniques

• Placement • Consolidation

16

a3 a4a1 a2 a5 a6a1 a2 a3 a4 a6a5

Process 1 Process 2

Redis TileDB

Process 1 Process 2

Chunk 1 Chunk 2

Predict Optimize



Goals
• Store arrays on heterogeneous data stores
– Without modifying applications

• Accelerate small I/O requests
– Placement à improve the performance of one request
– Consolidation à reduce the number of requests

• Automatically decide the array storage layout
– Which data store should an array be placed in?
– How do we store small arrays in chunks?

17

Predict Optimize



Optimization workflow

18

Henosis observes access pattern

Optimization

Tune array storage
Access pattern

Storage plan

Op6miza6on

Predict Optimize

Analytical cost model

Storage plan Si

Predicted execution time on Si



397

31

11

0

5

10

15

20

25

30

35

40

Small arrays Consolidation Consolidation and
placement

Ex
ec

ut
io

n 
tim

e 
(s

ec
on

ds
)

Vortice prediction

Optimization impact

19

Predict Op*mize

Directly read many small arrays from HadoopFS

Consolidate small arrays with same access pattern 
in a chunk. Read in fewer I/O requests.

Place hot arrays and co-accessed arrays in Redis. 
Read less data from HadoopFS.



Conclusions
• Reading from cache and memory copy to transform layouts can spend 

90% of the execution time
– An end-to-end model to cover the entire I/O path

• Applications spend 99% of the time to read small arrays
– VOL transparently forward requests to two data stores
– Placement and consolidation reduce the number of I/O requests to the slow data 

store
– An analytical cost model helps to decide the storage layout

20Personal webpage: https://web.cse.ohio-state.edu/~kang.1002/

https://web.cse.ohio-state.edu/~kang.1002/

