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Software stack

* Previous modeling work

Application
POSIX I/O

Applications directly access data. Previous

works build models to predict the I/0O time.

Optimize

 This work

Application
HDF5

POSIX I/0

How to predict the end-to-end performance
of the array I/O requests?
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Motivation

* Read an entire array

B Memory copy Data server access
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Read path in HDF5

Selected region and data buffer

Locate chunks in the region

Next chunk

Read from data servers

' I

Memcpy data from the library
cache to data buffer

Complete

Read from file _

system cache

The cache read and memory copy
operations can spend up to 90% and 87%
of the execution time in our experiments.

An end-to-end model should cover all the
steps in the 1/O path.

End-to-end time =

» cache read time +



Solution overview

System parameters

|

Selected Variable Cache
. —’ .
region calculation state

Linear regression
model

l

Predicted
time

 The system parameters
— the chunk shape
— storage format (HDF5 or Zarr)
— stripe count and size in the file system
— cache ssize

* The solution contains three components

— The cache state component maintains the

status of the library cache and the file system
cache

— The variable calculation component computes
the variables in the model based on the
selected region

— The model component predicts the cache read
time, data server access time and memory
copy time



Model accuracy

Experiment variables

e HDF5 e Zarr ----Perfect prediction
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— The RMSE of the model is 0.29

Real and predicted time — The model correctly predicts the fastest library
between HDF5 and Zarr 94% of the time.



Small array challenge

e Supernova detection

b8 e Segment CNN

> Real or bogus?

21X21 pixels/image



Small array challenge

e Vortices prediction
— 8KB/vortex
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Small array challenge

* One I/O per array
— 1/0 takes 200X to 700X longer than computation
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Small array challenge

Too many small I/O requests!




HDF5 on heterogeneous data stores

Application

Henosis

TileDB

HadoopFS

Locally attached disks
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Goals

e Store arrays on heterogeneous data stores
— Without modifying applications
e Accelerate small I/O requests

— Placement = improve the performance of one request
— Consolidation = reduce the number of requests

 Automatically decide the array storage layout
— Which data store should an array be placed in?
— How do we store small arrays in chunks?
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.
System architecture

Application

HDFS « ¢ File system

Virtual Object Layer

/O Interceptor Storage Tuner

Redis Driver | get TileDB Driver Henosis

TileDB

HadoopFS
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(Goals

e Store arrays on heterogeneous data stores
— Without modifying applications
* Accelerate small I/O requests

— Placement = improve the performance of one request
— Consolidation = reduce the number of requests

 Automatically decide the array storage layout
— Which data store should an array be placed in?
— How do we store small arrays in chunks?
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Placement
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Consolidation
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(Goals

e Store arrays on heterogeneous data stores
— Without modifying applications
e Accelerate small I/O requests

— Placement = improve the performance of one request
— Consolidation = reduce the number of requests

* Automatically decide the array storage layout
— Which data store should an array be placed in?
— How do we store small arrays in chunks?

17



Optimization workflow

Henosis observes access pattern Storage plan 5,

Optimization Analytical cost model

Access pattern

Storage plan
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Optimization impact
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Small arrays

Consolidation

Consolidation and
placement

Directly read many small arrays from HadoopFS

Consolidate small arrays with same access pattern

in a chunk. Read in fewer I/O requests.

Place hot arrays and co-accessed arrays in Redis.
Read less data from HadoopFS.
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Conclusions

e Reading from cache and memory copy to transform layouts can spend
90% of the execution time
— An end-to-end model to cover the entire I/O path

* Applications spend 99% of the time to read small arrays

— VOL transparently forward requests to two data stores

— Placement and consolidation reduce the number of I/O requests to the slow data
store

— An analytical cost model helps to decide the storage layout

Personal webpage: https://web.cse.ohio-state.edu/~kang.1002/ 20
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