
Copyright 2021, The HDF Group

October 13, 2021

Mochi: an Approach to Composable Data Services

Neelam Bagha and Jerome Soumagne
The HDF Group

Philip Carns, Matthieu Dorier, Kevin Harms, Robert Latham,
Pierre Matri, Rob Ross and Shane Snyder
Argonne National Laboratory

Bob Robey, Brad Settlemyer and Galen Shipman
Los Alamos National Laboratory

George Amvrosiadis, Chuck Cranor and Greg Ganger
Carnegie Mellon University

2Outline
§ Why do we need data services?
§ What is new in our approach?
§ How do we know we’re on the right track?
§ What challenges do we face?

§ Terminology
⁃ What is a data service
‣ Component / set of components that provide a feature / set of features to the user in

response to an application need
⁃ Monolithic data service ó Micro-services

October 13, 2021 HDF5 User Group 2021

3Evolution of HPC Workflows
§ Traditional workflow around monolithic parallel file system
§ No longer the case – there is a need for more complex workflows
§ Creating a data service is no easy task
⁃ Any HPC data service must face similar challenges
‣ Communication between applications
‣ Resilience and fault tolerance
‣ Deployment
‣ Security

October 13, 2021 HDF5 User Group 2021

Simulation
Code 1

Storage

Visualization

Data
Analysis

Telemetry

Simulation
Code 2

4File system monoculture for data (dis)service

October 13, 2021 HDF5 User Group 2021

Particle
Simulation

(e.g. VPIC)
C code

Machine Learning
Ensemble

(e.g. CANDLE)
Python code

Analysis of
Experimental Data

(e.g. art Framework)
C++ code

Applications

Data access needs

File system interface
(POSIX system calls)

Storage systemParallel File System

All applications use the same “one size fits all” file system
interfaces, semantics, and policies for data access Credit: Phil Carns

5HDF5 and VOL – Interface to Data Services

§ Virtual Object Layer
⁃ Adapted to application data model
‣ VFL too tied to native format
⁃ Plug-in / connector architecture to

provide data service on-demand
⁃ Can easily switch from one

connector to another and fulfill
application needs

October 13, 2021 HDF5 User Group 2021

HDF5 API

VOL Layer

VFD Layer

Native Data
Service

(e.g.
remote,
object
store,
etc)

REST

SE
C

2
M

PI
O

H
D

FS S3

Storage Cloud

6
Ecosystem of services co-existing
and reusing functionality

October 13, 2021 HDF5 User Group 2021

Components and microservices (data staging,
code coupling, telemetry, analytics)

This approach
allows to
simultaneously
pursue multiple
specialized service
implementations

Particle
Simulation

(e.g. VPIC)
C code

Machine Learning
Ensemble

(e.g. CANDLE)
Python code

Analysis of
Experimental Data

(e.g. art Framework)
C++ code

Applications

Data access needs

Custom service interfaces
with native language bindings
Data services

Instead of “one size fits all”, data services can present tailored interfaces, semantics, and
policies for data access while still leveraging robust building blocks.

Data Service Data Service Data Service

Composable building blocks

Credit: Phil Carns

7

Object API

Client
Memory

Object Provider

Application Process

Object Client

Object provider node

Application node

PMDK
or

POSIX

Extent
Provider

Bake
Client

DB (e.g.,
LevelDB)

KV Client

KV
Provider

KV Provider

Margo

Mercury Argobots
LevelDB Berkele

y DB
3. Multiple methods of

programming (C, C++, Python)
to make development more
accessible.

4. Portable communication library
designed for performance
across HPC environments.

1. Core functionality
developed as stand-
alone components and
“microservices”,
reusable in different
configurations and by
different teams in their
products.

2. Modularity eases
adaptation to new
memory, storage,
networking, and other
technologies.

The principles behind Mochi

Credit: Rob Ross

8
Component Summary

Core
Argobots Argobots provides user-level thread capabilities for managing concurrency.
Mercury Mercury is a library implementing remote procedure calls (RPCs).
Margo Margo is a C library using Argobots to simplify building RPC-based services.
Thallium Thallium allows development of Mochi services using modern C++.
SSG SSG provides tools for managing groups of providers in Mochi.

Utilities
ABT-IO ABT-IO enables POSIX file access with the Mochi framework.
Bedrock Bedrock is a bootstrapping and configuration system for Mochi components.
ch_placement ch-placement is a library implementing multiple hashing algorithms.
MDCS MDCS exposes remotely accessible counters for monitoring purposes.
Shuffle Shuffle provides a scalable all-to-all data shuffling service.

Microservices
BAKE Bake enables remote storage and retrieval of named blobs of data.
POESIE Poesie embeds language interpreters in Mochi services.
REMI REMI is a microservice that handles migrating sets of files between nodes.
SDSKV SDSKV enables RPC-based access to multiple key-value backends.
SDSDKV SDSDKV provides a distributed key-value service using Mochi components.
Sonata Sonata is a Mochi service for JSON document storage based on UnQLite.

Components that are available today

9

Service Institution(s) Summary
Chimbuko Brookhaven Workflow-level scalable performance trace analysis tool

DAOS Intel Object store that provides high bandwidth, low latency, and high I/O
operations per second (IOPS) storage containers to HPC applications

DataSpaces Univ. of Utah Programming system and data management framework for coupled
workflows

GekkoFS Univ. of Mainz Temporary distributed file system for HPC applications
Hermes IIT, THG, UIUC User-space platform for distributing data structures
HXHIM Los Alamos Hexadimensional hashing indexing middleware

Proactive Data
Containers

Berkeley Object-centric data management system to take advantage of deep memory
and storage hierarchy

Seer Los Alamos Lightweight in situ wrapper library adding in situ capabilities to simulations
Unify LLNL and ORNL Suite of specialized, flexible file systems that can be included in a user’s job

Kitware Platform for ubiquitous access to visualization results during runtime
Dist. Systems

Coursework
Tsukuba Creating distributed systems using RPC and RDMA as part of an Information

Systems course

How do we know we’re on the right track?
Other projects using Mochi

10Intel ® DAOS

October 12, 2021 HDF5 User Group 2021

DAOS Storage Engine
Storage Nodes

AI / Analytics / Simulation Workflow
Compute Nodes

POSIX I/O MPI I/O HDF5 Python Spark…

DAOS library

Network fabric

Intel® 3D-XPoint Memory 3D-NAND / XPoint SSD

Metadata, low-
latency I/Os &
indexing/query

Bulk data

SPDKPMDK NVMeNVDIMM

HDD

§ DAOS library directly linked with the applications
§ No need for dedicated cores
§ Low memory/CPU footprint
§ End-to-end OS bypass
§ KV API, non-blocking, lockless, snapshot support
§ Low-latency & high-message-rate communications
§ Native support for RDMA & scalable collective operations
§ Support for Infiniband, Slingshot, etc through OFI libfabric

§ Fine-grained I/O with media selection strategy
§ Only application data on SSD to maximize throughput
§ Small I/Os aggregated in pmem & migrated to SSD in large

chunks
§ Full user space model with no system calls on I/O path
§ Built-in storage management infrastructure (control plane)
§ NFSv4-like ACL

Credit: Mohamad Chaarawi

11Intel ® DAOS

§ Responds to
application data
access needs
§ Extendable through
microservice
architecture
§ Fine-grained I/O with
media selection
strategy

October 13, 2021 HDF5 User Group 2021

RPC
Mercury & OFI

Collectives
CaRT

Persistent
Storage

PMDK & SPDK

Thread Model
Argobots

Security

Logging
/Debugging

Infrastructure

Common
Data Structures

Control Plane

Pool

Container

Object

Self-healing

Concurrency
Control

Collection of
Microservices

…

Offload
/Accelerator

Credit: Mohamad Chaarawi

12DataSpaces

§ Responds to code coupling and
data staging needs

§ In-memory data staging for
coupling workflow components
§ Optimized for HPC workflows

October 13, 2021 HDF5 User Group 2021

Abstract DataSpaces storage model

Credit: Philip Davis

13Proactive Data Containers (PDC)

§ Responds to application data
access needs
§ Explore next generation storage
systems and interfaces
§ Object centric storage
§ Support for extracting
information from data
⁃ Information management
⁃ Simulation time analytics
⁃ Interaction among multiple datasets

October 13, 2021 HDF5 User Group 2021

Application Memory Locus NVRAM Locus

A
B

C
Datasets

Container

A
B

C
Datasets

Container

Many

Storage Locus

A
B

C
Datasets

Container

A
B

C
Datasets

Container

Countless

A
B

C
Datasets

Container

A few A
B

C
Datasets

Container

Mapping+Transformation

Mapping+Transformation

Proactive Data Containers

Legacy File

Legacy File

Adapter+Mapping+Transformation

Credit: Suren Byna

14Advantages and Challenges
§ Multiple services = Customization of environment
⁃ Add value to vendor-provided capabilities

§ Services can allow for re-usability of functionality
§ Complexity of deep layers complicates performance tuning
⁃ Tailoring to applications has performance wins, but diagnosing and tuning

requires additional tools.
§ Gaining the trust of users and facilities
⁃ Teams can be reticent of trusting new services with their data, especially when

long-term sustainability of software can be uncertain.

October 13, 2021 HDF5 User Group 2021

15

IMD

Conclusion

§ Scientific Achievement
⁃ Mochi has enabled numerous DOE

computer science teams, and industry,
to more rapidly build new data services
through a thoughtful design
methodology and reusable components.

§ Significance and Impact
⁃ Data services traditionally took many

years to develop and productize. The
Mochi project is shortening this
development cycle, allowing teams to
develop services specialized to their
needs while still enabling significant
component reuse.

§ Technical Approach
⁃ Built using proven remote procedure

call (RPC), remote direct memory
access (RDMA), and user-level
threading

⁃ Define methodology for design of
services using common components
wherever possible

⁃ Provide numerous typical capabilities
via reusable components

⁃ Exploring learning approaches to
configuration and optimization

16Acknowledgments / Questions
§ Mochi
⁃ https://www.mcs.anl.gov/research/projects/mochi/

§ Mercury RPC
⁃ https://mercury-hpc.github.io

October 13, 2021 HDF5 User Group 2021

This work is in part supported by the Director, Office of Advanced Scientific Computing Research, Office of Science, of the U.S. Department of Energy
under Contract No. DE-AC02-06CH11357; in part supported by the Exascale Computing Project (17-SC-20-SC), a joint project of the U.S. Department
of Energy’s Office of Science and National Nuclear Security Administration, responsible for delivering a capable exascale ecosystem, including software,
applications, and hardware technology, to support the nation’s exascale computing imperative; and in part supported by the U.S. Department of Energy,
Office of Science, Office of Advanced Scientific Computing Research, Scientific Discovery through Advanced Computing (SciDAC) program.

https://www.mcs.anl.gov/research/projects/mochi/
https://mercury-hpc.github.io/

