
ORNL is managed by UT-Battelle, LLC
for the US Department of Energy

“Extendable type-safe, thread-safe,
asynchronous APIs for Neutron Science
Data using modern C++ on top of HDF5”

William F Godoy, Addi Malviya Thakur, Steven E Hahn

Computer Science and Mathematics Division

Oak Ridge National Laboratory

Prepared for: HDF5 Users Group Meeting HUG2021 10/14/2021

2
2 NSD Progress Report

April 2020

Contents

• Background: Data at ORNL neutron science facilities,
SNS/HFIR

• Challenges: bottlenecks, implementations, sustainability

• Proposed long-term solution:
– Type-safe, threaded API on top of HDF5 using modern C++

• Future?

3
3 NSD Progress Report

April 2020

Background
ORNL neutron facilities, SNS and HFIR, fill us with interesting data
www.neutrons.ornl.gov

http://www.neutrons.ornl.gov/

4
4 NSD Progress Report

April 2020

Event-based Raw Neutron Data
• Saved to HDF5 files using the standard NeXus schema

https://www.nexusformat.org/ capturing metadata annotations required
for each instrument. (2,000 ~ 3,000 entries ….or more)

• < 5M events /s /instrument ~ 60 MB/s/instrument of raw data on the
stream. Stored for 3 years at https://analysis.sns.gov/ 1.2 TB/day, Grand
Total of 1.6 PB as of 2020. Single Intel Xeon “nodes” for processing.

• Mantid https://github.com/mantidproject/mantid processes raw-event data
into in-memory “workspaces” using generic loader used by several
instrument data reduction workflows. Used across several neutron
facilities

https://www.nexusformat.org/
https://analysis.sns.gov/
https://github.com/mantidproject/mantid

5
5 NSD Progress Report

April 2020

Schematic Overview of Data Flows

NeXus

Donaldson, D.R., Martin, S. and Proffen, T., 2017. Understanding Perspectives on Sharing Neutron
Data at Oak Ridge National Laboratory. Data Science Journal http://doi.org/10.5334/dsj-2017-035

https://github.com/mantidproject/mantid

http://doi.org/10.5334/dsj-2017-035
https://github.com/mantidproject/mantid

6
6 NSD Progress Report

April 2020

Challenges
Several metadata indexing, data, memory challenges
were identified on Mantid:

• Currently several I/O “glue-layers” to HDF5 including the
defunct NeXus API library:
https://github.com/nexusformat/code

• Inefficient data access, current APIs on top of HDF5 not
designed with performance in mind balancing
computation, memory, I/O à appropriate “in-memory”
index for processing, memory hogs for indexing

• Threading opens several HDF5 descriptors (1 per thread)
and locks I/O operations

• Single files are becoming “too large”…multiple files API?
Few MB to 100 GB

Godoy W.F., Peterson P.F., Hahn S.E., Hetrick J., Doucet M., Billings J.J. (2020) Performance Improvements on SNS and HFIR Instrument
Data Reduction Workflows Using Mantid. Smoky Mountains Conference 2020. https://doi.org/10.1007/978-3-030-63393-6_12

https://github.com/nexusformat/code
https://doi.org/10.1007/978-3-030-63393-6_12

7
7 NSD Progress Report

April 2020

Short term improvements on Mantid Loader
• Introduced a new in-memory indexing methodology. Facility Time == $$$$

Flamegraph profiles, x is sampling per
function, y is stack call!

Before

After
Impact on SNS/HFIR users

W. F. Godoy, P. F. Peterson, S. E. Hahn and J. J. Billings, "Efficient Data
Management in Neutron Scattering Data Reduction Workflows at ORNL," 2020
IEEE International Conference on Big Data (Big Data), 2020, pp. 2674-2680,
https://doi.org/10.1109/BigData50022.2020.9377836

https://doi.org/10.1109/BigData50022.2020.9377836

8
8 NSD Progress Report

April 2020

Proposed long-term solution
• No Cost I/O: NCIO (sorry for the pretentious name)

Exploratory work: https://github.com/ORNL/ncio

• Domain specific API with the right level of abstraction
on top of HDF5 (without doing a DSL approach):
– NCIO: NeXus entry, bankID, histogram, log, instrument

• Different API levels:
– Low-level “performance” API: pointers, deferred/lazy

evaluation, key/value options, threaded? for backends
– High-level: workflows on top of low-level APIs, bindings for end-

users

https://github.com/ORNL/ncio

9
9 NSD Progress Report

April 2020

NCIO Pluggable Architecture
• NCIO should leverage HDF5 API features: VOL, compression, chunking

NCIO

Reduced Quantities
of Interests

Virtual Transport Backend

HDF5 PHDF5 HDF5
VOL?

File System

Domain-Specific
LayersIO Layers Data Descriptor à NeXus

Consumers
Data Reduction Workflows, Mantid

10
10 NSD Progress Report

April 2020

NCIO Multithreaded API
• Type-safe: as close as possible to a domain of science semantics
• Take advantage of modern C++ (auto, threads)
• Thread-safe and truly-threaded (if/when backends allow)

Thread 0 Thread 1 Thread 2

Thread 1

Thread 0

Task-based parallelism C++
std::async: lazy evaluation

Single instruction multiple data (SIMD),
C++ std::thread

NCIONCIO NCIO

NCIOCompute

Memory ops Memory ops Memory ops

Memory opsFile ops
File ops
File ops

File ops

https://github.com/ORNL/ncio/blob/main/testing/functional/bindings/CXX17/functionalTest_cxx17DataDescriptor.cpp

11
11 NSD Progress Report

April 2020

Type-safe using C++ templates, thread-safe API

ncio::DataDescriptor fr = ncio.Open("data_async.h5",
ncio::OpenMode::read);

// Get is type-safe lazy evaluation, ref and pointer based
fr.Get<ncio::schema::nexus::entry::bank1_events::total_counts>
(totalCounts);
fr.Get<ncio::schema::nexus::entry::bank1_events::event_index>

(eventIndex.data(), ncio::BoxAll);
// automatic reallocation when executing
std::vector<double> eventTimeZero;
fr.Get<ncio::schema::nexus::entry::bank2_events::event_time_
zero>(eventTimeZero, ncio::BoxAll);

// HDF5 action happens in the background
std::future future = fr.ExecuteAsync(std::launch::async);
do_some_interesting_compute(); //overlap compute + I/O
future.get(); // data is available
fr.Close();

• Concurrent I/O, compute API

Thread 1

Thread 0

Task-based parallelism
C++ std::async

NCIOCompute

Memory ops

File ops

12
12 NSD Progress Report

April 2020

Type-safe using C++ templates, thread-safe API

// any callable
auto lf_ReadChunkThread = [](…){
// start, count = f(threadID);

fw.Get<ncio::schema::nexus::entry::bank1_events::event_time_off
set>(&eventTimeOffset[start], {{start}, {count}}, threadID); }

// thread-safe handler
ncio::DataDescriptor fr = ncio.Open("data_threads.h5",
ncio::OpenMode::read);

// C++11 threads or OpenMP
std::vector<std::thread> threads;
threads.reserve(nThreads);

// launch thread task
for (auto threadID = 0; threadID < nThreads; ++threadID)

threads.emplace_back(lf_ReadChunkThread, threadID,
nThreads, std::ref(eventTimeOffset), std::ref(totalCounts),
std::ref(fr));

for (auto &thread : threads) thread.join();
// data is available
fr.Close();

• SIMD thread API (always pre-allocate memory)

13
13 NSD Progress Report

April 2020

“Appropriate” type-safe in-memory index API
• Your favorite IDE would pick up these types (in case the user

forgets)…

W. Zhang, S. Byna, C. Niu, and Y. Chen ,“Exploring metadata search essentials for scientific data management,” in 2019
IEEE 26th International Conference on High Performance Computing, Data, and Analytics (HiPC), 2019, pp. 83–92.

14
14 NSD Progress Report

April 2020

“Appropriate” type-safe data entry API
• Your favorite IDE would pick up these types (in case the user forgets)…
• Catch errors way before runtime (or before compile time if using IDEs)
• Possible with C++17 auto template deduction (maps hierarchical entries nicely)

15
15 NSD Progress Report

April 2020

Summary

• Tackling (array-based) data as well as “in-memory”
metadata index access is essential for reduction workflows
at ORNL neutron science facilities SNS/HFIR.

• Current data access implementations on top of HDF5 serve
specific purposes and they map 1-to-1 to HDF5 API calls

• We present a “extendable” thread-safe (concurrent and
SIMD), type-safe, lazy API on top of HDF5 using modern
C++ features (template auto, std::thread, std::async)

• https://github.com/ORNL/ncio (still exploratory, but running
nightly regression with actual NeXus HDF5 data)

https://github.com/ORNL/ncio

16
16 NSD Progress Report

April 2020

Future?

• More data is being produced that won’t fit in memory:
https://neutrons.ornl.gov/sts Second Target Station

• Might need current high-performance computing (HPC),
MPI, parallel file system, NVRAM, etc.

• Extension to high-level languages (Python, Julia, R) for the
end-user have its own challenges:

• “Just-in-time” type-safety
• Python’s GIL, Global Interpreter Lock

• Some of these ideas need operational “patron” support…
“quality software = large investment”

https://neutrons.ornl.gov/sts

17
17 NSD Progress Report

April 2020

ACKNOWLEDGEMENT

Work at Oak Ridge National Laboratory was sponsored
by the Division of Scientific User Facilities, Office of Basic
Energy Sciences, US Department of Energy, under
Contract no. DE-AC05-00OR22725 with UT-Battelle, LLC

Thanks to the HUG2021 organization, The HDF5 Group
and HDF5 stakeholders

Thanks to the audience

