
Cache VOL: Efficient parallel I/O
through caching data on fast storage
Huihuo Zheng (ANL), Venkatram Vishwanath (ANL), Quincey Koziol (LBL),

Houjun Tang (LBL), Suren Byna (LBL)

10/13/2021

huihuo.zheng@anl.gov

https://github.com/hpc-io/vol-cache.git

Integrating node-local storage into parallel I/O
Node-local storage
• Local to the compute node, does not need to go

through the network (stable)
• Larger aggregate bandwidth compared to the

parallel file systems
Theta (w) – Lustre: 200 GB/s, SSD: 3TB/s
Summit (w) – GPFS: 2.5 TB/s, NVMe: 9.7 TB/s

Node-local storage (SSD, NVMe, etc)

Remote storage

Typical HPC storage hierarchy: node-local storage (NLS) + global
parallel file system (PFS)

Theta @ ALCF: Lustre + SSD (128 GB / node),
ThetaGPU (DGX-3) @ ALCF: NVMe (15.4 TB / node)
Summit @ OLCF: GPFS + NVMe (1.6 TB / node)

Cache VOL
• Caching / staging data on node-local storage
• Data movement in the background (through

Async VOL)
• All complexity is hidden from the users

https://github.com/hpc-io/vol-cache.git

Applications that will benefit from Cache VOL
• Heavy checking pointing I/O
• Intensive repetitive read

How to build Cache VOL
1) Building HDF5 (post_open_fix branch)

3) Building Cache VOL

$ git clone -b post_open_fix https://github.com/hpc-io/hdf5.git; cd hdf5;

$./autogen.sh

$./configure --prefix=${HDF5_ROOT} --enable-parallel --enable-threadsafe --enable-unsupported CC=mpicc

$ make all install –j4

2) Building argobots and Async VOL

$ git clone --recursive https://github.com/hpc-io/vol-async.git; cd vol-async

$ cd argobots; ./autogen.sh; CC=gcc; ./configure --prefix=${ABT_DIR}

$ make all install

$ cd ../src; make all; # Remember to edit the HDF5_DIR and ABT_DIR in the Makefile
$ cp *.h ${HDF5_VOL_DIR}/include/

$ cp lib* ${HDF5_VOL_DIR}/lib/

$ git clone https://github.com/hpc-io/vol-cache.git; cd vol-cache/src;

$ make all install # libh5cache_vol.so will be installed in ${HDF5_VOL_DIR}/lib

https://github.com/hpc-io/vol-cache.git

https://github.com/hpc-io/hdf5.git
https://github.com/hpc-io/vol-async.git
https://github.com/hpc-io/vol-cache.git

How to use Cache VOL

export HDF5_PLUGIN_PATH=$HDF5_VOL_DIR/lib
export HDF5_VOL_CONNECTOR="cache_ext
config=SSD.cfg;under_vol=512;under_info={under_vol=0;under_info={}}”
export LD_LIBRARY_PATH=$HDF5_PLUGIN_PATH :$LD_LIBRARY_PATH

3) Inserting compute work between write/read and close.

2) Enabling caching VOL

Opt. 1 Through global environment variables (HDF5_CACHE_RD / HDF5_CACHE_WR [yes|no])

MPI_Init_thread(…, MPI_THREAD_MULTIPLE…)

H5Dopen()
H5Dread()
…# compute
H5Dclose()

MPI_Init_thread(…, MPI_THREAD_MULTIPLE…)

H5Dcreate()
H5Dwrite()
… # compute
H5Dclose()

1) Setting VOL connectors

Opt. 2 Through setting file access property: H5Pset_fapl_plist(’HDF5_CACHE_RD’, true)

#content of SSD.cfg
HDF5_CACHE_STORAGE_SIZE137438953472
HDF5_CACHE_STORAGE_TYPE SSD
HDF5_CACHE_STORAGE_PATH /local/scratch/
HDF5_CACHE_STORAGE_SCOPE LOCAL
HDF5_CACHE_WRITE_BUFFER_SIZE 102457690
HDF5_CACHE_REPLACEMENT_POLICY LRU

https://github.com/hpc-io/vol-cache.git

Parallel Write (H5Dwrite) w/ node-local storage

5

Partial overlap of compute with I/O

Parallel file system

Shared HDF5 file

Node-local storage

1. Data is synchronously copied from the
memory buffer to memory mapped files
on the node-local storage using POSIX I/O.

2. Move data from memory mapped file
to the parallel file system asynchronously
by calling the dataset write function from
the Async VOL stacked below the Cache
VOL

3. Wait for all the tasks to finish in
H5Dclose() / H5Fclose()

Compute RAM->NLS Compute
I/O: NLS->PFS

Compute I/O (RAMàPFS) Computew/o caching

w/ caching

Details are hidden from the application developers.

Compute node RAM

https://github.com/hpc-io/vol-cache.git

Parallel Read (H5Dread)
w/ node-local storage

6

Single shared HDF5 file

MPI_Win

Parallel file system

Compute
node RAM

MPI_Put

Create memory mapped files and attached them to a
MPI_Win for one-sided remote access

1. Reading data
from parallel file
system

2. Caching data

using MPI_Put

Node-local
storage

One-sided communication for accessing
remote node storage.
• Each process exposes a part of its memory to

other processes (MPI Window)
• Other processes can directly read from or write

to this memory, without requiring that the
remote process synchronize (MPI_Put, MPI_Get)

MPI_Get

Compute I/O Compute

Compute I/O Computew/o Caching

w/ Caching

Reading data from

NLS using MPI_Put

First time reading the data Reading the data directly from node-local storage

https://github.com/hpc-io/vol-cache.git

Caching on global storage

7

Parallel file system

Shared HDF5 file

Compute node memory

Global storage

Shared HDF5 file

file.h5

/scratch/file.h5

Parallel write Parallel read

/scratch/file.h5

file.h5

https://github.com/hpc-io/vol-cache.git

Compute node memory

Performance evaluation w/ h5bench (VPIC IO)

Parallel write performance: each process writes 16MB of data to a shared HDF5 file.
With caching, the write bandwidth scale linearly with a larger aggregate bandwidth
surpassing the Lustre / GPFS write bandwidth.

Summit @ OLCF Theta @ ALCF

https://github.com/hpc-io/vol-cache.git

Parallel read for deep learning applications

Parallel read performance. The bandwidth is averaged over four iterations. At each step, the

application reads a random batch (32) of samples (224x224x3) with shuffling. The application

reads through the entire dataset in one iteration.

Summit @ OLCF
(GPFS + NVMe)

16 ppn

Theta @ ALCF
(Lustre + SSDs)

16 ppn

https://github.com/hpc-io/vol-cache.git

Conclusion
• Node-local storage caching / staging achieves faster and more

scalable I/O over direct I/O to parallel file system.
• VOL implementation makes it easy to integrate the framework

into existing HPC applications and python workloads with
minimal code change.

Ongoing work
• Integrate Cache VOL to HPC applications and deep learning

applications.

https://github.com/hpc-io/vol-cache.git

Acknowledgment

• This work was supported by the U.S. Department of Energy, Office of
Science, Office of Advanced Scientific Computing Research, under
contract number DE-AC02-05CH11231 (Project: Exascale Computing
Project [ECP] - ExaHDF5 project).

• This research used resources of the Argonne Leadership Computing
Facility, which is a DOE Office of Science User Facility supported under
Contract DE-AC02- 06CH11357.

• This research used resources of the Oak Ridge Leadership Computing
Facility, which is a DOE Office of Science User Facility supported under
Contract DE-AC05-00OR22725.

https://github.com/hpc-io/vol-cache.git

