Cache VOL.: Efficient parallel I/0
through caching data on fast storage

Huihuo Zheng (ANL), Venkatram Vishwanath (ANL), Quincey Koziol (LBL),
Houjun Tang (LBL), Suren Byna (LBL)

10/13/2021

huihuo.zheng@anl.gov

https://github.com/hpc-io/vol-cache.git — (

Integrating node-local storage into parallel I/0

Node-local storage
* Local to the compute node, does not need to go

>N | through the network (stable)

SN e Larger aggregate bandwidth compared to the
~ parallel file systems

SN B Theta (w) — Lustre: 200 GB/s, SSD: 3TB/s

-~ Summit (w) — GPFS: 2.5 TB/s, NVMe: 9.7 TB/s

— Cache VOL
Remote storage e Caching / staging data on node-local storage

Node-local storage (SSD, NVMe, etc) Data movement in the background (through
Typical HPC storage hierarchy: node-local storage (NLS) + global Async VOL)
parallel file system (PFS) * All complexity is hidden from the users

Theta @ ALCF: Lustre + SSD (128 GB / node),
ThetaGPU (DGX.3) @ ALCF: NVMe (15.4 TB / node) Applications that will benefit from Cache VOL

Summit @ OLCF: GPFS + NVMe (1.6 TB / node) * Heavy checking pointing 1/0
* Intensive repetitive read

~ —_
ceoeerf = S =\ ==
LY The HDE Group Argonne OOOOOOO https://github.com/hpc-io/vol-cache.git \(\,) PROJECT

How to build Cache VOL

1) Building HDF5 (post_open_fix branch)

S git clone -b post_open_fix https://github.com/hpc-io/hdf5.git; cd hdf5;

S ./autogen.sh

S ./configure --prefix=S{HDF5_ ROOT} --enable-parallel --enable-threadsafe --enable-unsupported CC=mpicc
S make all install —j4

2) Building argobots and Async VOL

S git clone --recursive https://github.com/hpc-io/vol-async.git; cd vol-async

S cd argobots; ./autogen.sh; CC=gcc; ./configure --prefix=S{ABT_DIR}

S make all install

S cd ../src; make all; # Remember to edit the HDF5_DIR and ABT_DIR in the Makefile
S cp *.h S{HDF5_VOL_DIR}/include/

$ cp lib* ${HDF5_VOL_DIR}/lib/

3) Building Cache VOL

S git clone https://github.com/hpc-io/vol-cache.git; cd vol-cache/src;
S make all install # libh5cache_vol.so will be installed in S{HDF5_VOL_DIR}/lib

BERKELEY LAB ThIe-I-IIB:.(Iiroup Argggnl:]g OOOOOOO https://github.com/hpc-io/vol-cache.git

J EXASCALE
COMPUTING
PROJECT

https://github.com/hpc-io/hdf5.git
https://github.com/hpc-io/vol-async.git
https://github.com/hpc-io/vol-cache.git

How to use Cache VOL

1) Setting VOL connectors

#content of SSD.cfg
HDF5_CACHE_STORAGE_SIZE137438953472
export HDF5_PLUGIN_PATH=$HDF5_VOL_DIR/lib HDF5 CACHE STORAGE TYPE SSD
FEFEETE) ok COUNLENOLS ety 24 HDF5_CACHE_STORAGE_PATH /local/scratch/
config:SSD.cfg;under_voI:512;under_info:{under_voI:O;under_info:{}}” HDF5 CACHE STORAGE SCOPE LOCAL
export LD _LIBRARY PATH=$HDF5_ PLUGIN PATH :$LD_LIBRARY PATH HDF5 CACHE WRITE BUFFER SIZE 102457690
HDF5_CACHE_REPLACEMENT_POLICY LRU

2) Enabling caching VOL

Opt. 1 Through global environment variables (HDF5_CACHE_RD / HDF5_CACHE_WR [yes|no])

Opt. 2 Through setting file access property: H5Pset fapl plist(’'HDF5 CACHE RD’, true)

3) Inserting compute work between write/read and close.

MPL_Init_thread(..., MPI_THREAD_MULTIPLE...)
H5Dopen ()

H5Dread ()

..# compute

H5Dclose()

frreeere

y LN :
BERKELEY LAB [N Argon ne
.......... & e HDF G roup NATIONAL LABORATORY

MPL_Init_thread(..., MPI_THREAD_MULTIPLE...)
H5Dcreate ()

HS5Dwrite ()

.. # compute

H5Dclose ()

https://github.com/hpc-io/vol-cache.git

J EXASCALE
COMPUTING
PROJECT

Parallel Write (H5Dwrite) w/ node-local storage

1. Data is synchronously copied from the
memory buffer to memory mapped files

Compute node RAM on the node-local storage using POSIX 1/0.
2. Move data from memory mapped file
Node-local storage to the parallel file system asynchronously
S \ 7 =7 by calling the dataset write function from
N \ / s

the Async VOL stacked below the Cache
VOL

\ \ / 4
N Y P
Parallel file system ﬁ i 3. Wait for all the tasks to finish in

Shared HDF5 file H5Dclose() / H5Fclose()

w/o caching | Compute /0 (RAM->PFS) Compute

w/ caching Compute RAM->NLS| Compute
1/0: NLS->PFS

Partial overlap of compute with I/0

Details are hidden from the application developers.

el The HDF Group Argonne https://github.com/hpc-io/vol-cache.git _\(\.)

) EXASCALE
COMPUTING

arallel Read (H5Dread)
w/ node-local storage

Create memory mapped files and attached them to a
MPI_Win for one-sided remote access

Node-local MPI_Win
storage
\

// ‘MPI Put\ 2. Caching data

One-sided communication for accessing

remote node storage.

« Each process exposes a part of its memory to
other processes (MPI Window)

« Other processes can directly read from or write
to this memory, without requiring that the
remote process synchronize (MPI_Put, MPI_Get)

imajtilesic)

Reading data from

MPI_Geéx
Compute using MPI_Put % NLS using MPI_Put
node RAM

1. Reading data

from parallel file
Parallel fil t
arallel file system system w/o Caching Compute /0 ‘ Compute

Single shared HDF5 file
w/ Caching Compute /0 || Compute

First time reading the data

A
i

|y ¥ =
reeeeee M
LTI The HDF Group

AAAAAAAAAAAAAAAAAA

Reading the data directly from node-local storage

Py

=y
\ EXASCALE
6 [r— J
https://github.com/hpc-io/vol-cache.git \(\ \) PROJECT
B

Caching on global storage

Compute node memory Compute node memory

B B
,f\

Global storage /scratch/file.h5

/1 1 v\

I 1 v\

/A \\ , \
! [
o Do \\
Parallel file system ﬁﬁ . /
fle.hs PO fiens

Shared HDFS5 file Shared HDFS file

Parallel write Parallel read

Argon ne° https://github.com/hpc-io/voI-ca7che.git — \(\~

AAAAAAAAAAAAAAAAAA

/scratch/file.h5

EXASCALE

—\
\) —’ COMPUTING

PROJECT

1 I Baseline write rate
I Observed write rate w/ cache

Summit GPFS Filesystem

GiB/sec
GiB/sec

Summit @ OLCF

S N R LS

Number of nodes

AAAAAAAAAAAAAAAAAA

Performance evaluation w/ h5bench (VPIC 10)

1000 A

800 A

600 A

400 A

200 A

Bl Baseline write rate
W Observed write rate w/ cache on SSD

Theta Eagle filesystem

Stripe count: 64
Stripe size: 16 MB

Theta @ ALCF

AL A I L R - R L R

Number of nodes

Parallel write performance: each process writes 16 MB of data to a shared HDF5 file.
With caching, the write bandwidth scale linearly with a larger aggregate bandwidth
surpassing the Lustre / GPFS write bandwidth.

LN
g g |
The HDF Group

https://github.com/hpc-io/vol-cache.git

EXASCALE

—’ COMPUTING

PROJECT

'arallel read for deep learning applications

2001 MW w/o cache B w/o cache
m w/ cache 200 mm w/ cache
150
Theta @ ALCF 1507 syummit @ OLCF
100 - (Lustre + SSDs) (GPFS + NVMe)

100 -

16 ppn 16 ppn

U1
o

50

Bandwidth (GiB/sec)

O_
1 2 4 8 16 32 64 128 1 2 4 8 16 32
Number of nodes Number of nodes

Parallel read performance. The bandwidth is averaged over four iterations. At each step, the
application reads a random batch (32) of samples (224x224x3) with shuffling. The application
reads through the entire dataset in one iteration.
§ Ih m e \ EXASCALE
/\lH M Argonne° (\) —) COMPUTING

https://github.com/hpc-io/vol-cache.git — PROJECT
LG The HDF Group * © wiow: womwon ps://€ P g __

[

Conclusion

* Node-local storage caching / staging achieves faster and more
scalable /O over direct I/O to parallel file system.

« VOL implementation makes it easy to integrate the framework
into existing HPC applications and python workloads with
minimal code change.

Ongoing work

+ Integrate Cache VOL to HPC applications and deep learning
applications.

https://github.com/hpc-io/vol-cache.git — \(

PPPPPPP

[

Acknowledgment

« This work was supported by the U.S. Department of Energy, Office of
Science, Office of Advanced Scientific Computing Research, under
contract number DE-AC02-05CH11231 (Project: Exascale Computing
Project [ECP] - ExaHDF5 project).

« This research used resources of the Argonne Leadership Computing
Facility, which is a DOE Office of Science User Facility supported under
Contract DE-AC02- 06CH11357.

« This research used resources of the Oak Ridge Leadership Computing
Facility, which is a DOE Office of Science User Facility supported under
Contract DE-AC05-000R22725.

—_
= \ =
Argonne N FrRobecT

G The HDE Group T8N e https://github.com/hpc-io/vol-cache.git _\(

