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2Outline
§ What’s new in this presentation
⁃ Full paper: "Accelerating HDF5 I/O for Exascale using DAOS," in IEEE 

Transactions on Parallel and Distributed Systems,                                          
doi: 10.1109/TPDS.2021.3097884.

§ HDF5 Parallel I/O w/Native File Format
§ Introduction to Intel ® DAOS
§ HDF5 DAOS VOL Connector and File Format
§ New Features
§ Evaluation and Application Example
§ Conclusion
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3HDF5 Parallel I/O w/Native File Format
§

§ POSIX I/O was designed for disk-based storage
⁃ High-latency to write data at random offsets because of mechanical aspects
⁃ Current native HDF5 file format inherited POSIX I/O block-based model (serial)
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File on Disk                                                                                                        …

File 
Superblock

Object 
header… Object data

Group

Dataset

HDF5 File H5Pset_fapl_mpio()
H5Fcreate()
H5Gcreate()
H5Dcreate()
H5Dwrite()
H5Dread()

Collective metadata operations
(not an API or data model restriction)

Collective or Independent raw data operations

Mitigations: subfiling / file per process I/O 
Added complexity, always limited by POSIX
Object-based model of HDF5 lost in storage 



4HDF5 Parallel I/O w/Native File Format
§ In Theory

§ In Practice
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/

Dset1

HDF5 File (shared)

… DsetN

sprintf(dset_name, “Dset%d”, my_rank + 1);
fapl = H5Pset_fapl_mpio(…);
file = H5Fcreate(…);
dset = H5Dcreate(file, dset_name, …);
H5Dwrite(dset, …);

fapl = H5Pset_fapl_mpio(…);
file = H5Fcreate(…, fapl, …);
for (i = 0; i < n_ranks; i++) {

sprintf(dset_name, “Dset%d”, i + 1);
dset[i] = H5Dcreate(file, dset_name, …);

}
H5Dwrite(dset[my_rank], …);



5Intel ® DAOS
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DAOS Storage Engine
Storage Nodes

Credit: Mohamad Chaarawi (Intel Corporation)

AI / Analytics / Simulation Workflow
Compute Nodes

POSIX I/O MPI I/O HDF5 Python Spark…

DAOS library

Network fabric

Intel® 3D-XPoint Memory 3D-NAND / XPoint SSD

Metadata, low-
latency I/Os & 
indexing/query

Bulk data

SPDKPMDK NVMeNVDIMM

HDD

§ DAOS library directly linked with the applications
§ No need for dedicated cores
§ Low memory/CPU footprint
§ End-to-end OS bypass
§ KV API, non-blocking, lockless, snapshot support
§ Low-latency & high-message-rate communications
§ Native support for RDMA & scalable collective operations
§ Support for Infiniband, Slingshot, etc through OFI libfabric

§ Fine-grained I/O with media selection strategy
§ Only application data on SSD to maximize throughput
§ Small I/Os aggregated in pmem & migrated to SSD in large 

chunks
§ Full user space model with no system calls on I/O path
§ Built-in storage management infrastructure (control plane)
§ NFSv4-like ACL

Delivers high-IOPs, high-bandwidth and low-latency 
storage with advanced features in a single tier



6HDF5 VOL Architecture
§

§

§

§ Three main components:
⁃ HDF5 Library
⁃ DAOS VOL Connector
⁃ (External) HDF5 Test Suite

§ Tools support:
⁃ h5dump, h5ls, h5diff, h5repack, 

h5copy, etc
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7HDF5 DAOS VOL Connector
§ Allows the creation and use of HDF5 files 
in DAOS
⁃ Minimal or no code changes for application 

developer (if only looking for compatibility)
⁃ Two ways to tell which connector to use
‣ HDF5 file access property list (recommended for new 

files or when manipulating multiple VOLs)
herr_t H5Pset_fapl_daos(hid_t fapl_id,        
const char *pool, const char *sys_name)

‣ Environment variable
HDF5_VOL_CONNECTOR=daos
HDF5_PLUGIN_PATH=/path/to/connector/folder

⁃ Auto-detect and Unified Namespace component
facilitates opening of DAOS files with the DAOS 
connector (embedded DAOS metadata through 
extended attributes)
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HDF5 API

VOL Layer

Native VOL

DAOS VOL

Default
Redirects to 
connector

H5Fopen(“my_file.h5”,…,H5P_DEFAULT);

HDF5 auto-detect

DAOS UNS

File System DAOS

Pool / 
container 

UUIDs

Path resolve 
query from stub 
“my_file.h5”



8HDF5 DAOS VOL “File” Format
§

§ Independent I/O through 
DAOS (K/V objects)
⁃ Parallel I/O and chunking now 

become first-class citizens
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DAOS Object 2 – Dataset (fixed length)

dkey: Internal Metadata

akey: Creation Property 
List

akey: Reference Count

akey: Datatype

akey: Dataspace

dkey: <chunk 1 coords>

record data: array of elmts

dkey: <chunk 2 coords>

record data: array of elmts

…

DAOS Object 1 – Root Group

dkey: Internal Metadata

akey: Creation Property 
List

akey: Reference Count

dkey: <Link 1 name>

record data: Link 1 target

DAOS Container
=

HDF5 File

Root 
Group

Dataset

HDF5 File



9Data control and Placement
§ Multiple options
⁃ Chunking enabled by default for 

contiguous datasets, controlled with:
H5Pset_chunk()

⁃ Set DAOS object class per DAOS object 
to control number of targets used for 
storing object (= stripe count):
H5daos_set_object_class()
default uses all targets available

⁃ Set property to control numbers of 
replicas (for recovery), also controlled 
through:
H5daos_set_object_class() 
default is no replica
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Application …

Target 
1

Target 
4

3-way replica
(3+1 DAOS 

server nodes)

target ≠ storage node:
multiple storage targets per node 

⁃ Additional container properties (e.g.
chksum, acl, rf) controlled with:
H5daos_set_prop()



10Features
§ All HDF5 features are currently 
supported except features specific 
to the native file format
§ Additional features implemented
⁃ Map objects (enabled by K/V objects)
⁃ File deletion
⁃ Independent metadata
‣ HDF5 objects can be created 

independently
‣ Currently enabled with:
H5daos_set_all_ind_metadata_ops()
‣ May become default behavior in the 

future
⁃ Asynchronous I/O
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HDF5 File (Container)

Root 
Group

Group 1 … … Group N

Dataset Map Attribute Datatype

Atomic, compound, VL, reference type data, etc



11Asynchronous I/O
§ Enables asynchrony using Event Set API
⁃ Implemented at DAOS connector level
⁃ HDF5 API returns before operation completes, places operation in an “event 

set”, while tracking dependencies
‣ Uses DAOS task engine

§ Asynchrony must be explicitly controlled by application
⁃ Similar to existing async APIs, such as MPI non-blocking
⁃ Use async versions of all routines that may block
⁃ Beware of dependencies
‣ e.g., H5Dcreate_async()à H5Dwrite_async() à H5Dclose_async()
‣ H5ESwait() is responsible for advancing asynchronous operations
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12Evaluation – Configuration
§ DAOS system deployed on Frontera (TACC)
⁃ 4 DAOS storage nodes 
⁃ 24 Intel® Optane persistent memory DIMMs of 256GB each
⁃ InfiniBand HDR100 (100 Gb/s) connectivity to the compute nodes
⁃ Use only 28 cores within same NUMA node as InfiniBand card
⁃ 2 TB DAOS pool without NVMe backend to make exclusive use of persistent 

memory

§ Software version used has evolved since then
⁃ DAOS version used was 1.1.2.1
⁃ HDF5 version was 1.13.0rc5 and DAOS VOL version was 1.1.0rc3 (pre-

release)
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13Evaluation – IOR small I/O (1 KB)

Write Read
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14Evaluation - IOR large I/O (1 MB)

Write Read
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15Evaluation – Example w/VPIC
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VPIC I/O performance using collective and 
independent group creation

Re-defined VPIC file structure for electron 
particle (N particles)

Timestep_0

Part1

HDF5 File (shared)

… PartN

/

{i,dx,dy,dz,ux,uy,uz,w}



16Conclusion
§ Native file format inherited limitations from block-based model
⁃ Switching to object-based model is more in line with HDF5 data model
⁃ New storage models can now be defined without any “parallel” constraints
‣ Storage model should map application’s data model

§ Switching to DAOS VOL is a one-line code change
⁃ However…
‣ New features such as async I/O, maps, fine-grained data control and placement can 

only be fully utilized with DAOS
‣ We expect application I/O kernels to be re-worked based on these new features

§ DAOS VOL reached release candidate status
⁃ Will be fully released along with HDF5 1.13.0
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17Acknowledgments / Questions
§ DAOS VOL Connector repository:
⁃ https://github.com/HDFGroup/vol-daos

§ More results / details in IEEE TPDS paper
⁃ https://doi.org/10.1109/TPDS.2021.3097884
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