
Copyright 2021, The HDF Group

October 12, 2021

Accelerating HDF5’s Parallel I/O for
Exascale using DAOS

Jerome Soumagne, Jordan Henderson, Neil Fortner, Scot
Breitenfeld, Raymond Lu, Dana Robinson, Neelam Bagha
and Elena Pourmal
The HDF Group

Mohamad Chaarawi, Ira Lewis and Johann Lombardi
Intel Corporation

2Outline
§ What’s new in this presentation
⁃ Full paper: "Accelerating HDF5 I/O for Exascale using DAOS," in IEEE

Transactions on Parallel and Distributed Systems,
doi: 10.1109/TPDS.2021.3097884.

§ HDF5 Parallel I/O w/Native File Format
§ Introduction to Intel ® DAOS
§ HDF5 DAOS VOL Connector and File Format
§ New Features
§ Evaluation and Application Example
§ Conclusion

October 12, 2021 HDF5 User Group 2021

3HDF5 Parallel I/O w/Native File Format
§

§ POSIX I/O was designed for disk-based storage
⁃ High-latency to write data at random offsets because of mechanical aspects
⁃ Current native HDF5 file format inherited POSIX I/O block-based model (serial)

October 12, 2021 HDF5 User Group 2021

Shared
File on Disk …

File
Superblock

Object
header… Object data

Group

Dataset

HDF5 File H5Pset_fapl_mpio()
H5Fcreate()
H5Gcreate()
H5Dcreate()
H5Dwrite()
H5Dread()

Collective metadata operations
(not an API or data model restriction)

Collective or Independent raw data operations

Mitigations: subfiling / file per process I/O
Added complexity, always limited by POSIX
Object-based model of HDF5 lost in storage

4HDF5 Parallel I/O w/Native File Format
§ In Theory

§ In Practice

October 12, 2021 HDF5 User Group 2021

/

Dset1

HDF5 File (shared)

… DsetN

sprintf(dset_name, “Dset%d”, my_rank + 1);
fapl = H5Pset_fapl_mpio(…);
file = H5Fcreate(…);
dset = H5Dcreate(file, dset_name, …);
H5Dwrite(dset, …);

fapl = H5Pset_fapl_mpio(…);
file = H5Fcreate(…, fapl, …);
for (i = 0; i < n_ranks; i++) {

sprintf(dset_name, “Dset%d”, i + 1);
dset[i] = H5Dcreate(file, dset_name, …);

}
H5Dwrite(dset[my_rank], …);

5Intel ® DAOS

October 12, 2021 HDF5 User Group 2021

DAOS Storage Engine
Storage Nodes

Credit: Mohamad Chaarawi (Intel Corporation)

AI / Analytics / Simulation Workflow
Compute Nodes

POSIX I/O MPI I/O HDF5 Python Spark…

DAOS library

Network fabric

Intel® 3D-XPoint Memory 3D-NAND / XPoint SSD

Metadata, low-
latency I/Os &
indexing/query

Bulk data

SPDKPMDK NVMeNVDIMM

HDD

§ DAOS library directly linked with the applications
§ No need for dedicated cores
§ Low memory/CPU footprint
§ End-to-end OS bypass
§ KV API, non-blocking, lockless, snapshot support
§ Low-latency & high-message-rate communications
§ Native support for RDMA & scalable collective operations
§ Support for Infiniband, Slingshot, etc through OFI libfabric

§ Fine-grained I/O with media selection strategy
§ Only application data on SSD to maximize throughput
§ Small I/Os aggregated in pmem & migrated to SSD in large

chunks
§ Full user space model with no system calls on I/O path
§ Built-in storage management infrastructure (control plane)
§ NFSv4-like ACL

Delivers high-IOPs, high-bandwidth and low-latency
storage with advanced features in a single tier

6HDF5 VOL Architecture
§

§

§

§ Three main components:
⁃ HDF5 Library
⁃ DAOS VOL Connector
⁃ (External) HDF5 Test Suite

§ Tools support:
⁃ h5dump, h5ls, h5diff, h5repack,

h5copy, etc

October 12, 2021 HDF5 User Group 2021

HDF5 API

VOL Layer

VFD Layer

Native VOL

DAOS
VOL

SE
C

2

M
PI

O

File System DAOS

HDF5 Tools Test SuiteNew Component

…

…

DAOS APIPOSIX API

Core HDF5
Library

External
Test
Suite

External
VOL

Connector

Enhanced Component

Native Component

Through
MPI I/O

7HDF5 DAOS VOL Connector
§ Allows the creation and use of HDF5 files
in DAOS
⁃ Minimal or no code changes for application

developer (if only looking for compatibility)
⁃ Two ways to tell which connector to use
‣ HDF5 file access property list (recommended for new

files or when manipulating multiple VOLs)
herr_t H5Pset_fapl_daos(hid_t fapl_id,
const char *pool, const char *sys_name)

‣ Environment variable
HDF5_VOL_CONNECTOR=daos
HDF5_PLUGIN_PATH=/path/to/connector/folder

⁃ Auto-detect and Unified Namespace component
facilitates opening of DAOS files with the DAOS
connector (embedded DAOS metadata through
extended attributes)

October 12, 2021 HDF5 User Group 2021

HDF5 API

VOL Layer

Native VOL

DAOS VOL

Default
Redirects to
connector

H5Fopen(“my_file.h5”,…,H5P_DEFAULT);

HDF5 auto-detect

DAOS UNS

File System DAOS

Pool /
container

UUIDs

Path resolve
query from stub
“my_file.h5”

8HDF5 DAOS VOL “File” Format
§

§ Independent I/O through
DAOS (K/V objects)
⁃ Parallel I/O and chunking now

become first-class citizens

October 12, 2021 HDF5 User Group 2021

DAOS Object 2 – Dataset (fixed length)

dkey: Internal Metadata

akey: Creation Property
List

akey: Reference Count

akey: Datatype

akey: Dataspace

dkey: <chunk 1 coords>

record data: array of elmts

dkey: <chunk 2 coords>

record data: array of elmts

…

DAOS Object 1 – Root Group

dkey: Internal Metadata

akey: Creation Property
List

akey: Reference Count

dkey: <Link 1 name>

record data: Link 1 target

DAOS Container
=

HDF5 File

Root
Group

Dataset

HDF5 File

9Data control and Placement
§ Multiple options
⁃ Chunking enabled by default for

contiguous datasets, controlled with:
H5Pset_chunk()

⁃ Set DAOS object class per DAOS object
to control number of targets used for
storing object (= stripe count):
H5daos_set_object_class()
default uses all targets available

⁃ Set property to control numbers of
replicas (for recovery), also controlled
through:
H5daos_set_object_class()
default is no replica

October 12, 2021 HDF5 User Group 2021

Application …

Target
1

Target
4

3-way replica
(3+1 DAOS

server nodes)

target ≠ storage node:
multiple storage targets per node

⁃ Additional container properties (e.g.
chksum, acl, rf) controlled with:
H5daos_set_prop()

10Features
§ All HDF5 features are currently
supported except features specific
to the native file format
§ Additional features implemented
⁃ Map objects (enabled by K/V objects)
⁃ File deletion
⁃ Independent metadata
‣ HDF5 objects can be created

independently
‣ Currently enabled with:
H5daos_set_all_ind_metadata_ops()
‣ May become default behavior in the

future
⁃ Asynchronous I/O

October 12, 2021 HDF5 User Group 2021

HDF5 File (Container)

Root
Group

Group 1 … … Group N

Dataset Map Attribute Datatype

Atomic, compound, VL, reference type data, etc

11Asynchronous I/O
§ Enables asynchrony using Event Set API
⁃ Implemented at DAOS connector level
⁃ HDF5 API returns before operation completes, places operation in an “event

set”, while tracking dependencies
‣ Uses DAOS task engine

§ Asynchrony must be explicitly controlled by application
⁃ Similar to existing async APIs, such as MPI non-blocking
⁃ Use async versions of all routines that may block
⁃ Beware of dependencies
‣ e.g., H5Dcreate_async()à H5Dwrite_async() à H5Dclose_async()
‣ H5ESwait() is responsible for advancing asynchronous operations

October 12, 2021 HDF5 User Group 2021

12Evaluation – Configuration
§ DAOS system deployed on Frontera (TACC)
⁃ 4 DAOS storage nodes
⁃ 24 Intel® Optane persistent memory DIMMs of 256GB each
⁃ InfiniBand HDR100 (100 Gb/s) connectivity to the compute nodes
⁃ Use only 28 cores within same NUMA node as InfiniBand card
⁃ 2 TB DAOS pool without NVMe backend to make exclusive use of persistent

memory

§ Software version used has evolved since then
⁃ DAOS version used was 1.1.2.1
⁃ HDF5 version was 1.13.0rc5 and DAOS VOL version was 1.1.0rc3 (pre-

release)

October 12, 2021 HDF5 User Group 2021

13Evaluation – IOR small I/O (1 KB)

Write Read

October 12, 2021 HDF5 User Group 2021

14Evaluation - IOR large I/O (1 MB)

Write Read

October 12, 2021 HDF5 User Group 2021

15Evaluation – Example w/VPIC

October 12, 2021 HDF5 User Group 2021

VPIC I/O performance using collective and
independent group creation

Re-defined VPIC file structure for electron
particle (N particles)

Timestep_0

Part1

HDF5 File (shared)

… PartN

/

{i,dx,dy,dz,ux,uy,uz,w}

16Conclusion
§ Native file format inherited limitations from block-based model
⁃ Switching to object-based model is more in line with HDF5 data model
⁃ New storage models can now be defined without any “parallel” constraints
‣ Storage model should map application’s data model

§ Switching to DAOS VOL is a one-line code change
⁃ However…
‣ New features such as async I/O, maps, fine-grained data control and placement can

only be fully utilized with DAOS
‣ We expect application I/O kernels to be re-worked based on these new features

§ DAOS VOL reached release candidate status
⁃ Will be fully released along with HDF5 1.13.0

October 12, 2021 HDF5 User Group 2021

17Acknowledgments / Questions
§ DAOS VOL Connector repository:
⁃ https://github.com/HDFGroup/vol-daos

§ More results / details in IEEE TPDS paper
⁃ https://doi.org/10.1109/TPDS.2021.3097884

October 12, 2021 HDF5 User Group 2021

This material is based upon work supported by the U.S. Department of Energy and Argonne National Laboratory and its Leadership Computing Facility,
including under Contract DE-AC02-06CH11357 and Award Number 8F-30005. This work was generated with financial support from the U.S.
Government through said Contract and Award Number(s), and as such the U.S. Government retains a paid-up, nonexclusive, irrevocable, world-wide
license to reproduce, prepare derivative works, distribute copies to the public, and display publicly, by or on behalf of the Government, this work in whole
or in part, or otherwise use the work for Federal purposes.

https://github.com/HDFGroup/vol-daos
https://doi.org/10.1109/TPDS.2021.3097884

