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HDF5 1.13.0
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HDF5 1.13.0 (unstable)

• Release date: Late 2021
• Unstable release
• APIs subject to change
• File format may change
• No binary compatibility guarantees

• "Unstable" doesn't mean "buggy"
• Please send us feedback if something could be improved!

• In the develop (default) branch in the hdf5 repository on GitHub
• There will not be an hdf5_1_13 branch
• All 1.13 releases will split off of the develop branch

• HDF5 1.14.0 (stable) targeted for late 2022
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HDF5 1.13.0 (unstable)

• Assumes modern compilers and systems
• C99
• C++11 (if building C++ wrappers)
• Targeted at current POSIX platforms
• Visual Studio 2015+ (due to C99 needs)
• Fewer checks for obsolete things than in 1.12/1.10

• Memory sanity checks OFF by default
• Heap canaries cause problems with buffer (re)allocation/free
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Other HDF5 1.13.0 Changes

• Asynchronous HDF5
• New async versions of many API calls
• New event set (H5ES) API calls
• Requires an async-capable VOL connector (NOT in the native connector)

hid_t
H5Aopen(hid_t obj_id, const char *attr_name, hid_t aapl_id);

hid_t
H5Aopen_async(const char *app_file, const char *app_func,

unsigned app_line, hid_t obj_id,
const char *attr_name, hid_t aapl_id, hid_t es_id);



Virtual File Driver (VFD) Changes
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VFD Plugins - Motivation

• Connects the HDF5 native file format to a wider variety of data sources

• Leverages the strengths of the filter plugin scheme

• Convenience for users

• Welcomes new contributions to the HDF5 ecosystem

• More adaptable to a changing data landscape
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Documentation

• VFD plugin RFC
• https://github.com/HDFGroup/hdf5doc/blob/master/RFCs/HDF5_Library/VFL_DriverPlugi

ns/RFC__A_Plugin_Interface_for_HDF5_Virtual_File_Drivers.pdf

• Support portal page for dynamic plugins of all types
• https://portal.hdfgroup.org/display/HDF5/Dynamic+Plugins+in+HDF5

• Support portal page for registered plugins
• https://portal.hdfgroup.org/display/support/Contributions
• VFD page will be created after the feature is merged to develop

https://github.com/HDFGroup/hdf5doc/blob/master/RFCs/HDF5_Library/VFL_DriverPlugins/RFC__A_Plugin_Interface_for_HDF5_Virtual_File_Drivers.pdf
https://portal.hdfgroup.org/display/HDF5/Dynamic+Plugins+in+HDF5
https://portal.hdfgroup.org/display/support/Contributions
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VFDs As Dynamically Loaded Plugins

• Works like existing filter and VOL plugins

• Same default paths (for all plugins)
• POSIX: /usr/local/hdf5/lib/plugin
• Windows: %ALLUSERSPROFILE%/hdf5/lib/plugin

• HDF5_PLUGIN_PATH environment variable

• VFDs are loaded when:
• H5Pset_driver* is called
• HDF5_DRIVER environment variable is set and a fapl is created
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Environment Variables

• HDF5_DRIVER
• Name of VFD to load

• HDF5_DRIVER_CONFIG
• VFD configuration string

• Will replace the default VFD on the fapl at creation time



13

VFD Configuration Strings

• Some VFDs will require a way to pass arbitrary configuration data to 
them

• This can be done by passing a string that will be interpreted by the VFD
• THG imposes NO structure on this string
• Use whatever you like - JSON, YAML, XML, roll-your-own, etc.

• Used in H5Pset*() calls and HDF5 command-line tools (h5dump, etc.)

• VFD authors can call H5Pget_driver_config_str() on the passed-in 
fapl to get the string for processing
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VFD 'values'

• New H5FD_class_t VFD struct field

• A unique identifier for the VFD plugin
• NOT library-managed hid_t IDs (hence 'value' to avoid confusion)
• Implemented as an integer (typedef'd to H5FD_class_value_t)

• Ranges reserved for specific purposes
• 0 - 255 for THG
• 256 - 511 for testing (will never be used by internal or external plugins)
• 512 - 65535 for new VFD plugins

• Register new VFD plugin values with THG (help@hdfgroup.org)
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New API Calls

herr_t
H5Pset_driver_by_name(hid_t fapl_id, const char *driver_name,

const char *driver_config);

herr_t
H5Pset_driver_by_value(hid_t fapl_id, H5FD_class_value_t driver_value,

const char *driver_config);

ssize_t
H5Pget_driver_config_str(hid_t fapl_id, char *config_buf, size_t buf_size);
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More New API Calls

htri_t
H5FDis_driver_registered_by_name(const char *driver_name);

htri_t
H5FDis_driver_registered_by_value(H5FD_class_value_t driver_value);
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Tools Support

--vfd-value Value (ID) of the VFD to use for
opening the HDF5 file specified

--vfd-name      Name of the VFD to use for opening
the HDF5 file specified

--vfd-info VFD-specific configuration string
to pass to the VFD

• Same way you specify a VOL connector in 1.12
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Authoring VFD Plugins

Need to implement H5PLget_plugin_type() and H5PLget_plugin_info()

The HDF5 library has two "example" VFDs:
• stdio - a single-file VFD
• multi - a multi-file VFD

Both use standard C and no internal HDF5 API calls so they can be copied to 
serve as templates for your own VFDs

No template project/repository at this time, but you could use the build files in 
the template VOL (link on a later slide) as a start.
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ctl Callback

• New callback in H5FD_class_t struct

• Allows arbitrary operations by the VFD
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ctl Callback

herr_t (*ctl)(H5FD_t *file, uint64_t op_code, uint64_t flags, const void *input,
void **output);

This newly-added "ctl" callback allows Virtual File Drivers to intercept and handle arbitrary 
operations identified by an operation code. Its parameters are as follows:

`file` [in]    - A pointer to the file to be operated on
`op_code` [in] - The operation code identifying the operation to be performed
`flags` [in]   - Flags governing the behavior of the operation performed (see H5FDpublic.h

for a list of valid flags)
`input` [in]   - A pointer to arguments passed to the VFD performing the operation
`output` [out] - A pointer for the receiving VFD to use for output from the operation
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VFD Testing

• The HDF5 test suite has been modified to separate library-VFD-specific 
VFD tests from VFD tests that should work for arbitrary drivers

• Simply set HDF5_DRIVER and HDF5_DRIVER_CONFIG and run 'make 
check' or CTest



Virtual Object Layer (VOL) Changes
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HDF5 1.12 and Later Library Architecture
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VOL Changes - Motivation

• The VOL is evolving as we gain experience with it

• New demands from ECP connectors

• Programming model is still fundamentally the same

• Biggest changes are for optional operations

• The changes that follow are mainly for connector authors
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The HDF5 1.12 VOL API Is DEPRECATED

• Current VOL development should target 1.13.0

• Important changes to the VOL API cannot be brought to the 1.12 
development branch due to binary compatibility issues

• Please switch your VOL development to target the develop branch!



26

Versioning

• Current value of H5VL_VERSION is 2 (in H5VLpublic.h)

• Connectors now have their own version number, distinct from the VOL 
API version number

/* Overall connector fields & callbacks */
unsigned           version;          /**< VOL connector class struct version #     */
H5VL_class_value_t value;            /**< Value to identify connector              */
const char *       name;             /**< Connector name (MUST be unique!)         */
unsigned           conn_version;     /**< Version # of connector                   */
unsigned           cap_flags;        /**< Capability flags for connector           */
herr_t (*initialize)(hid_t vipl_id); /**< Connector initialization callback        */
herr_t (*terminate)(void);           /**< Connector termination callback           */

* NEW *
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specific/get Callback Operation Changes

• Several of the specific and get callbacks have had changes to the 
operations they support

Removed:
• H5VL_BLOB_GETSIZE
• H5VL_FILE_MOUNT
• H5VL_FILE_UNMOUNT
• H5VL_REQUEST_WAITALL
• H5VL_REQUEST_WAITANY
• H5VL_REQUEST_WAITSOME

Added:
• H5VL_ATTR_DELETE_BY_IDX
• H5VL_DATATYPE_GET_BINARY_SIZE
• H5VL_GROUP_MOUNT
• H5VL_GROUP_UNMOUNT
• H5VL_REQUEST_GET_ERR_STACK
• H5VL_REQUEST_GET_EXEC_TIME
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Callback Operation Changes

In other words:

• H5Adelete_by_idx is handled separately now

• Mount operations moved from file to group specific

• Blob "get size" specific callback moved to datatype get callback

• 1.12 does not have async, so the initial guesses at the request 
operations changed when the feature was implemented
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No More Callback va_list Arguments

Old-style specific/get/optional callbacks

herr_t (*specific)(void *obj, H5VL_file_specific_t specific_type,
hid_t dxpl_id, void **req, va_list arguments);

New-style callbacks

herr_t (*specific)(void *obj, H5VL_file_specific_args_t *args,
hid_t dxpl_id, void **req);

Updated in both callbacks and associated "VOL developer" API calls like H5VLdataset_get()
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No More Callback va_list Arguments

typedef enum H5VL_file_specific_t {
H5VL_FILE_FLUSH,
H5VL_FILE_REOPEN,
H5VL_FILE_MOUNT,
H5VL_FILE_UNMOUNT,
H5VL_FILE_IS_ACCESSIBLE,
H5VL_FILE_DELETE,
H5VL_FILE_IS_EQUAL

} H5VL_file_specific_t;

/* Parameters for file 'specific' operations */
typedef struct H5VL_file_specific_args_t {

H5VL_file_specific_t op_type;

/* Parameters for each operation */
union {

/* H5VL_FILE_FLUSH */
struct {

H5I_type_t  obj_type;
H5F_scope_t scope;

} flush;

/* <SNIP> */

/* H5VL_FILE_IS_EQUAL */
struct {

void *   obj2;
hbool_t *same_file;

} is_equal;
} args;

} H5VL_file_specific_args_t;

OLD

* NEW *
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New get_cap_flags Callback

• Part of H5VL_introspect_class_t
• Capabilities flags are listed in H5VLconnector.h
• Added because stacked VOL connectors can't simply return their own 

capability flags
• Signature:

herr_t
(*get_cap_flags)(const void *info, unsigned *cap_flags);
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H5VLquery_optional() Changes

The Boolean out parameter has been replaced with a set of bitwise flags 
to give a better sense of the operation's behavior

herr_t
H5VLquery_optional(hid_t obj_id, H5VL_subclass_t subcls, int opt_type,

hbool_t *supported);

Is now…
herr_t
H5VLquery_optional(hid_t obj_id, H5VL_subclass_t subcls, int opt_type,

uint64_t *flags);
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H5VLquery_optional() Changes

/* Flags to return from H5VLquery_optional API and 'opt_query' callbacks */
H5VL_OPT_QUERY_SUPPORTED       0x0001 /* VOL connector supports this operation */
H5VL_OPT_QUERY_READ_DATA       0x0002 /* Operation reads data for object */
H5VL_OPT_QUERY_WRITE_DATA      0x0004 /* Operation writes data for object */
H5VL_OPT_QUERY_QUERY_METADATA  0x0008 /* Operation reads metadata for object */
H5VL_OPT_QUERY_MODIFY_METADATA 0x0010 /* Operation modifies metadata for object */
H5VL_OPT_QUERY_COLLECTIVE            0x0020

/* Operation is collective (operations without this flag are assumed to be independent) */
H5VL_OPT_QUERY_NO_ASYNC  0x0040 /* Operation may NOT be executed asynchronously */
H5VL_OPT_QUERY_MULTI_OBJ 0x0080 /* Operation involves multiple objects */
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Optional Operations

• Must be registered using H5VLregister_opt_operation()

herr_t
H5VLregister_opt_operation(H5VL_subclass_t subcls, const char *op_name,

int *op_val /*out*/)

• Library will assign an integer operation value that will be passed via 
H5VL_optional_args_t for checking in your optional callback.

• Avoids operation clash across VOL connectors
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Optional Operations

• This is more complicated now, and will be documented in further detail in 
the updated Connector Author's Guide

• Can look at the async or cache VOLs on GitHub for examples of how to 
handle optional operations

• Cache VOL connector: https://github.com/hpc-io/vol-cache

• Async VOL connector: https://github.com/hpc-io/vol-async

https://github.com/hpc-io/vol-cache
https://github.com/hpc-io/vol-async
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Async I/O

• The VOL has been updated for asynchronous operations

• Requires a suitable VOL (no native HDF5 async functionality)

• Presentation at HUG
• Wednesday, October 13, 2021
• https://www.hdfgroup.org/hug/hug21/agenda-hdf5-users-group-2021/

https://www.hdfgroup.org/hug/hug21/agenda-hdf5-users-group-2021/


VOL Templates
Template and Passthru VOL Connectors
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Template VOL Connector

• Template for constructing terminal VOL connectors
• No functionality
• Empty VOL structure
• Autotools and CMake build files
• You fill in the callbacks

• Located at:
• https://github.com/HDFGroup/vol-template

https://github.com/HDFGroup/vol-template
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Passthru VOL Connector

• Template for constructing pass-through VOL connectors
• Simply forwards the calls to another VOL connector
• You add anything sophisticated
• Uses standard C and no internal HDF5 API calls so can be built externally

• Located in the HDF5 source repository
• src/H5VLpassthru.(c|h)
• Could copy into the template VOL connector to use its build files
• Built and tested with the library (via 'make check-passthru-vol')
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VOL Documentation

These are in the process of being updated (new versions in fall 2021)

• VOL User's Guide
• VOL Connector Author Guide
• The updated CAG will have a section on migrating version 0 and 1 connectors
• Both can be found at https://portal.hdfgroup.org/display/HDF5/Virtual+Object+Layer

• VOL API Reference Manual
• https://portal.hdfgroup.org/display/HDF5/Libraries+and+Tools+Reference
• Moving to doxygen: https://docs.hdfgroup.org/hdf5/develop/

https://portal.hdfgroup.org/display/HDF5/Virtual+Object+Layer
https://portal.hdfgroup.org/display/HDF5/Libraries+and+Tools+Reference
https://docs.hdfgroup.org/hdf5/develop/


Asynchronous VOL and Cache VOL
Dependencies, Installation, and Testing
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Dependencies

Cache VOL

Asynchronous VOL

Argobots HDF5

VOL Tests
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How to Install Async/Cache VOL using Spack

3-liner Installation & Test Script:

1. $git clone https://github.com/hyoklee/spack
2. $cd spack/bin
3. $./test_vols.sh

https://github.com/hyoklee/spack


45

HDF5 Users Group Meeting

• October 12-15, 2021

• Async VOL discussion - October 13 @ 9:00 am

• Cache VOL discussion - October 13 @ 9:20 am



Demo
Live
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Future Work
• Investigate HDFGroup/vol-tests* failures.
• 3 tests fail out of 15.
• 2 failures are different between hpc-io/hdf5 and HDFGroup/hdf5.

• Push the development work (hyoklee/spack) to the official Spack repos.
• HDFGroup/hdf-spack: The HDF Group reviews this repo. 
• spack/spack: Spack community reviews this repo.

*user/repo in
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THANK YOU!

Questions & Comments?

Register now to attend the HDF5 Users Group Meeting!
October 12-15

https://www.hdfgroup.org/hug/hug21/
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