
HDF5 1.13.0
VFD and VOL Changes
September 24, 2021

Dana Robinson
Joe Lee

The HDF Group

2

Outline

• HDF5 1.13.0
• VFD layer changes
• VOL changes
• Template VOL connectors
• Async and cache VOL discussion and demo

HDF5 1.13.0

4

HDF5 1.13.0 (unstable)

• Release date: Late 2021
• Unstable release
• APIs subject to change
• File format may change
• No binary compatibility guarantees

• "Unstable" doesn't mean "buggy"
• Please send us feedback if something could be improved!

• In the develop (default) branch in the hdf5 repository on GitHub
• There will not be an hdf5_1_13 branch
• All 1.13 releases will split off of the develop branch

• HDF5 1.14.0 (stable) targeted for late 2022

5

HDF5 1.13.0 (unstable)

• Assumes modern compilers and systems
• C99
• C++11 (if building C++ wrappers)
• Targeted at current POSIX platforms
• Visual Studio 2015+ (due to C99 needs)
• Fewer checks for obsolete things than in 1.12/1.10

• Memory sanity checks OFF by default
• Heap canaries cause problems with buffer (re)allocation/free

6

Other HDF5 1.13.0 Changes

• Asynchronous HDF5
• New async versions of many API calls
• New event set (H5ES) API calls
• Requires an async-capable VOL connector (NOT in the native connector)

hid_t
H5Aopen(hid_t obj_id, const char *attr_name, hid_t aapl_id);

hid_t
H5Aopen_async(const char *app_file, const char *app_func,

unsigned app_line, hid_t obj_id,
const char *attr_name, hid_t aapl_id, hid_t es_id);

Virtual File Driver (VFD) Changes

8

HDF5 1.12 and Later Library Architecture

HDF5 API

VOL Layer

VFD Layer

Native VOL

VOL

SE
C

2

M
PI

O

File System Storage

HDF5 Application

…

…

POSIX API

External
VOL

Connector

R
O

S3

Cloud Cloud
HSDS

REST
VOL

…

…

h5pyd

“Native”
HDF5

9

VFD Plugins - Motivation

• Connects the HDF5 native file format to a wider variety of data sources

• Leverages the strengths of the filter plugin scheme

• Convenience for users

• Welcomes new contributions to the HDF5 ecosystem

• More adaptable to a changing data landscape

10

Documentation

• VFD plugin RFC
• https://github.com/HDFGroup/hdf5doc/blob/master/RFCs/HDF5_Library/VFL_DriverPlugi

ns/RFC__A_Plugin_Interface_for_HDF5_Virtual_File_Drivers.pdf

• Support portal page for dynamic plugins of all types
• https://portal.hdfgroup.org/display/HDF5/Dynamic+Plugins+in+HDF5

• Support portal page for registered plugins
• https://portal.hdfgroup.org/display/support/Contributions
• VFD page will be created after the feature is merged to develop

https://github.com/HDFGroup/hdf5doc/blob/master/RFCs/HDF5_Library/VFL_DriverPlugins/RFC__A_Plugin_Interface_for_HDF5_Virtual_File_Drivers.pdf
https://portal.hdfgroup.org/display/HDF5/Dynamic+Plugins+in+HDF5
https://portal.hdfgroup.org/display/support/Contributions

11

VFDs As Dynamically Loaded Plugins

• Works like existing filter and VOL plugins

• Same default paths (for all plugins)
• POSIX: /usr/local/hdf5/lib/plugin
• Windows: %ALLUSERSPROFILE%/hdf5/lib/plugin

• HDF5_PLUGIN_PATH environment variable

• VFDs are loaded when:
• H5Pset_driver* is called
• HDF5_DRIVER environment variable is set and a fapl is created

12

Environment Variables

• HDF5_DRIVER
• Name of VFD to load

• HDF5_DRIVER_CONFIG
• VFD configuration string

• Will replace the default VFD on the fapl at creation time

13

VFD Configuration Strings

• Some VFDs will require a way to pass arbitrary configuration data to
them

• This can be done by passing a string that will be interpreted by the VFD
• THG imposes NO structure on this string
• Use whatever you like - JSON, YAML, XML, roll-your-own, etc.

• Used in H5Pset*() calls and HDF5 command-line tools (h5dump, etc.)

• VFD authors can call H5Pget_driver_config_str() on the passed-in
fapl to get the string for processing

14

VFD 'values'

• New H5FD_class_t VFD struct field

• A unique identifier for the VFD plugin
• NOT library-managed hid_t IDs (hence 'value' to avoid confusion)
• Implemented as an integer (typedef'd to H5FD_class_value_t)

• Ranges reserved for specific purposes
• 0 - 255 for THG
• 256 - 511 for testing (will never be used by internal or external plugins)
• 512 - 65535 for new VFD plugins

• Register new VFD plugin values with THG (help@hdfgroup.org)

15

New API Calls

herr_t
H5Pset_driver_by_name(hid_t fapl_id, const char *driver_name,

const char *driver_config);

herr_t
H5Pset_driver_by_value(hid_t fapl_id, H5FD_class_value_t driver_value,

const char *driver_config);

ssize_t
H5Pget_driver_config_str(hid_t fapl_id, char *config_buf, size_t buf_size);

16

More New API Calls

htri_t
H5FDis_driver_registered_by_name(const char *driver_name);

htri_t
H5FDis_driver_registered_by_value(H5FD_class_value_t driver_value);

17

Tools Support

--vfd-value Value (ID) of the VFD to use for
opening the HDF5 file specified

--vfd-name Name of the VFD to use for opening
the HDF5 file specified

--vfd-info VFD-specific configuration string
to pass to the VFD

• Same way you specify a VOL connector in 1.12

18

Authoring VFD Plugins

Need to implement H5PLget_plugin_type() and H5PLget_plugin_info()

The HDF5 library has two "example" VFDs:
• stdio - a single-file VFD
• multi - a multi-file VFD

Both use standard C and no internal HDF5 API calls so they can be copied to
serve as templates for your own VFDs

No template project/repository at this time, but you could use the build files in
the template VOL (link on a later slide) as a start.

19

ctl Callback

• New callback in H5FD_class_t struct

• Allows arbitrary operations by the VFD

20

ctl Callback

herr_t (*ctl)(H5FD_t *file, uint64_t op_code, uint64_t flags, const void *input,
void **output);

This newly-added "ctl" callback allows Virtual File Drivers to intercept and handle arbitrary
operations identified by an operation code. Its parameters are as follows:

`file` [in] - A pointer to the file to be operated on
`op_code` [in] - The operation code identifying the operation to be performed
`flags` [in] - Flags governing the behavior of the operation performed (see H5FDpublic.h

for a list of valid flags)
`input` [in] - A pointer to arguments passed to the VFD performing the operation
`output` [out] - A pointer for the receiving VFD to use for output from the operation

21

VFD Testing

• The HDF5 test suite has been modified to separate library-VFD-specific
VFD tests from VFD tests that should work for arbitrary drivers

• Simply set HDF5_DRIVER and HDF5_DRIVER_CONFIG and run 'make
check' or CTest

Virtual Object Layer (VOL) Changes

23

HDF5 1.12 and Later Library Architecture

HDF5 API

VOL Layer

VFD Layer

Native VOL

VOL

SE
C

2

M
PI

O

File System Storage

HDF5 Application

…

…

POSIX API

External
VOL

Connector

R
O

S3

Cloud Cloud
HSDS

REST
VOL

…

…

h5pyd

“Native”
HDF5

24

VOL Changes - Motivation

• The VOL is evolving as we gain experience with it

• New demands from ECP connectors

• Programming model is still fundamentally the same

• Biggest changes are for optional operations

• The changes that follow are mainly for connector authors

25

The HDF5 1.12 VOL API Is DEPRECATED

• Current VOL development should target 1.13.0

• Important changes to the VOL API cannot be brought to the 1.12
development branch due to binary compatibility issues

• Please switch your VOL development to target the develop branch!

26

Versioning

• Current value of H5VL_VERSION is 2 (in H5VLpublic.h)

• Connectors now have their own version number, distinct from the VOL
API version number

/* Overall connector fields & callbacks */
unsigned version; /**< VOL connector class struct version # */
H5VL_class_value_t value; /**< Value to identify connector */
const char * name; /**< Connector name (MUST be unique!) */
unsigned conn_version; /**< Version # of connector */
unsigned cap_flags; /**< Capability flags for connector */
herr_t (*initialize)(hid_t vipl_id); /**< Connector initialization callback */
herr_t (*terminate)(void); /**< Connector termination callback */

* NEW *

27

specific/get Callback Operation Changes

• Several of the specific and get callbacks have had changes to the
operations they support

Removed:
• H5VL_BLOB_GETSIZE
• H5VL_FILE_MOUNT
• H5VL_FILE_UNMOUNT
• H5VL_REQUEST_WAITALL
• H5VL_REQUEST_WAITANY
• H5VL_REQUEST_WAITSOME

Added:
• H5VL_ATTR_DELETE_BY_IDX
• H5VL_DATATYPE_GET_BINARY_SIZE
• H5VL_GROUP_MOUNT
• H5VL_GROUP_UNMOUNT
• H5VL_REQUEST_GET_ERR_STACK
• H5VL_REQUEST_GET_EXEC_TIME

28

Callback Operation Changes

In other words:

• H5Adelete_by_idx is handled separately now

• Mount operations moved from file to group specific

• Blob "get size" specific callback moved to datatype get callback

• 1.12 does not have async, so the initial guesses at the request
operations changed when the feature was implemented

29

No More Callback va_list Arguments

Old-style specific/get/optional callbacks

herr_t (*specific)(void *obj, H5VL_file_specific_t specific_type,
hid_t dxpl_id, void **req, va_list arguments);

New-style callbacks

herr_t (*specific)(void *obj, H5VL_file_specific_args_t *args,
hid_t dxpl_id, void **req);

Updated in both callbacks and associated "VOL developer" API calls like H5VLdataset_get()

30

No More Callback va_list Arguments

typedef enum H5VL_file_specific_t {
H5VL_FILE_FLUSH,
H5VL_FILE_REOPEN,
H5VL_FILE_MOUNT,
H5VL_FILE_UNMOUNT,
H5VL_FILE_IS_ACCESSIBLE,
H5VL_FILE_DELETE,
H5VL_FILE_IS_EQUAL

} H5VL_file_specific_t;

/* Parameters for file 'specific' operations */
typedef struct H5VL_file_specific_args_t {

H5VL_file_specific_t op_type;

/* Parameters for each operation */
union {

/* H5VL_FILE_FLUSH */
struct {

H5I_type_t obj_type;
H5F_scope_t scope;

} flush;

/* <SNIP> */

/* H5VL_FILE_IS_EQUAL */
struct {

void * obj2;
hbool_t *same_file;

} is_equal;
} args;

} H5VL_file_specific_args_t;

OLD

* NEW *

31

New get_cap_flags Callback

• Part of H5VL_introspect_class_t
• Capabilities flags are listed in H5VLconnector.h
• Added because stacked VOL connectors can't simply return their own

capability flags
• Signature:

herr_t
(*get_cap_flags)(const void *info, unsigned *cap_flags);

32

H5VLquery_optional() Changes

The Boolean out parameter has been replaced with a set of bitwise flags
to give a better sense of the operation's behavior

herr_t
H5VLquery_optional(hid_t obj_id, H5VL_subclass_t subcls, int opt_type,

hbool_t *supported);

Is now…
herr_t
H5VLquery_optional(hid_t obj_id, H5VL_subclass_t subcls, int opt_type,

uint64_t *flags);

33

H5VLquery_optional() Changes

/* Flags to return from H5VLquery_optional API and 'opt_query' callbacks */
H5VL_OPT_QUERY_SUPPORTED 0x0001 /* VOL connector supports this operation */
H5VL_OPT_QUERY_READ_DATA 0x0002 /* Operation reads data for object */
H5VL_OPT_QUERY_WRITE_DATA 0x0004 /* Operation writes data for object */
H5VL_OPT_QUERY_QUERY_METADATA 0x0008 /* Operation reads metadata for object */
H5VL_OPT_QUERY_MODIFY_METADATA 0x0010 /* Operation modifies metadata for object */
H5VL_OPT_QUERY_COLLECTIVE 0x0020

/* Operation is collective (operations without this flag are assumed to be independent) */
H5VL_OPT_QUERY_NO_ASYNC 0x0040 /* Operation may NOT be executed asynchronously */
H5VL_OPT_QUERY_MULTI_OBJ 0x0080 /* Operation involves multiple objects */

34

Optional Operations

• Must be registered using H5VLregister_opt_operation()

herr_t
H5VLregister_opt_operation(H5VL_subclass_t subcls, const char *op_name,

int *op_val /*out*/)

• Library will assign an integer operation value that will be passed via
H5VL_optional_args_t for checking in your optional callback.

• Avoids operation clash across VOL connectors

35

Optional Operations

• This is more complicated now, and will be documented in further detail in
the updated Connector Author's Guide

• Can look at the async or cache VOLs on GitHub for examples of how to
handle optional operations

• Cache VOL connector: https://github.com/hpc-io/vol-cache

• Async VOL connector: https://github.com/hpc-io/vol-async

https://github.com/hpc-io/vol-cache
https://github.com/hpc-io/vol-async

36

Async I/O

• The VOL has been updated for asynchronous operations

• Requires a suitable VOL (no native HDF5 async functionality)

• Presentation at HUG
• Wednesday, October 13, 2021
• https://www.hdfgroup.org/hug/hug21/agenda-hdf5-users-group-2021/

https://www.hdfgroup.org/hug/hug21/agenda-hdf5-users-group-2021/

VOL Templates
Template and Passthru VOL Connectors

39

Template VOL Connector

• Template for constructing terminal VOL connectors
• No functionality
• Empty VOL structure
• Autotools and CMake build files
• You fill in the callbacks

• Located at:
• https://github.com/HDFGroup/vol-template

https://github.com/HDFGroup/vol-template

40

Passthru VOL Connector

• Template for constructing pass-through VOL connectors
• Simply forwards the calls to another VOL connector
• You add anything sophisticated
• Uses standard C and no internal HDF5 API calls so can be built externally

• Located in the HDF5 source repository
• src/H5VLpassthru.(c|h)
• Could copy into the template VOL connector to use its build files
• Built and tested with the library (via 'make check-passthru-vol')

41

VOL Documentation

These are in the process of being updated (new versions in fall 2021)

• VOL User's Guide
• VOL Connector Author Guide
• The updated CAG will have a section on migrating version 0 and 1 connectors
• Both can be found at https://portal.hdfgroup.org/display/HDF5/Virtual+Object+Layer

• VOL API Reference Manual
• https://portal.hdfgroup.org/display/HDF5/Libraries+and+Tools+Reference
• Moving to doxygen: https://docs.hdfgroup.org/hdf5/develop/

https://portal.hdfgroup.org/display/HDF5/Virtual+Object+Layer
https://portal.hdfgroup.org/display/HDF5/Libraries+and+Tools+Reference
https://docs.hdfgroup.org/hdf5/develop/

Asynchronous VOL and Cache VOL
Dependencies, Installation, and Testing

43

Dependencies

Cache VOL

Asynchronous VOL

Argobots HDF5

VOL Tests

44

How to Install Async/Cache VOL using Spack

3-liner Installation & Test Script:

1. $git clone https://github.com/hyoklee/spack
2. $cd spack/bin
3. $./test_vols.sh

https://github.com/hyoklee/spack

45

HDF5 Users Group Meeting

• October 12-15, 2021

• Async VOL discussion - October 13 @ 9:00 am

• Cache VOL discussion - October 13 @ 9:20 am

Demo
Live

47

Future Work
• Investigate HDFGroup/vol-tests* failures.
• 3 tests fail out of 15.
• 2 failures are different between hpc-io/hdf5 and HDFGroup/hdf5.

• Push the development work (hyoklee/spack) to the official Spack repos.
• HDFGroup/hdf-spack: The HDF Group reviews this repo.
• spack/spack: Spack community reviews this repo.

*user/repo in

48

Acknowledgement

This material is based upon work supported by the U.S. Department of Energy,
Office of Science, under Contract Numbers DE-AC02-05CH11231 and
DE-AC05-00OR22725.

Disclaimer
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its
use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

THANK YOU!

Questions & Comments?

Register now to attend the HDF5 Users Group Meeting!
October 12-15

https://www.hdfgroup.org/hug/hug21/

Proprietary and Confidential. © 2016, The HDF Group.

