
Parallel HDF5 and compression filters
with synchrotron scattering data

Zdenek Matej, Andreas Mattsson
MAX IV Laboratory, Lund University

Ingredients

● parallel HDF5 with MPI

● image like synchrotron data

● compression

2021-07-08 European HDF Users Group Summer 20212

Parallel HDF5 with MPI
● message passing interface (MPI) is a standard for parallel computing

architecture; invented in 1991-1992; popular at high-performance-
computing (HPC) clusters

● Sophie Servan (DESY) et al., Technical-Workshop-Survey (2020): 9/10
facilities have SLURM HPC cluster
https://github.com/ExPaNDS-eu/ExPaNDS/blob/master/WP4/20201009-Technical-Workshop-Survey.pdf

● “reference” HDF5 library implementation
– a complex sw and have numerous technical limitations one should be aware of
– MPI enables distributed multi-task application can effectively read/write data to

a single HDF5 file and even dataset
– well defined parallel HDF5 library and compatible software (h5py/mpi4py) are

available off-the-shelf in HPC sw distributions (e.g. EasyBuild)
– parallel HDF5 is an “traditional” feature, i.e. 1.8
– sw: savu (Diamond), PtyPy - both are mpi4py & h5py

● alternatives with serial HDF5
– virtual datasets distributed over multiple files
– direct chunk write/read
– disadvantage: 1.10 required, some sw cannot read such data

2021-07-08 European HDF Users Group Summer 20213

https://github.com/ExPaNDS-eu/ExPaNDS/blob/master/WP4/20201009-Technical-Workshop-Survey.pdf
https://github.com/easybuilders/easybuild-easyconfigs

Image like synchrotron data
● general synchrotron data have complex structure/format

● “detector” data (99% volume of all data): usually 2D or 3D datasets

● here focus on performance
– example JungFRAU detector (PSI)

• 4M pixels (2 bytes depth) x 2kHz
• 16 GB/s uncompressed, bslz compression factor ~ 4x, finally 4 GB/s compressed

2021-07-08 European HDF Users Group Summer 20214

data_0000

chunk
(c_size)

single pixel (uint16)

n-MPI processes writing
simultaneously

nsets/ndsets

single image
(g_N x g_N pixels)

pHDF5, image like data, no compression
tools

● tools: h5perf_parallel, ior (-a HDF5), hdf5_pwrite3dc, h5py-snippets/gist

● hdf5_pwrite3dc is deeply inspired by code from Timoty Brown on Stackoverflow

2021-07-08 European HDF Users Group Summer 20215

code

workaround to set
FILL_TIME_NEVER in h5py
h5py issue #1282

https://gitlab.com/MAXIV-SCISW/parallel-h5py-examples
https://gist.github.com/apdavison/36126ee26067592ee69bf51b57fd3f31
https://github.com/zdemat/hdf_pwrite3dc
https://stackoverflow.com/questions/29075591/creating-hdf5-file-and-datasets-with-openmpi
https://github.com/h5py/h5py/issues/1282

pHDF5, image like data, no compression
typical figures

2021-07-08 European HDF Users Group Summer 20216

compression write
[GB/s]

read
[GB/s]

ntasks comment

ior no 5.7 4.1 8 1 x FDR

pwrite no 5.8 4.8 8 1 x FDR

pwrite no 10.9 8.2 8 2 x FDR

h5py-parallel no 4.5 - 16 1 x FDR

h5py-serial (dask) no - 5.4 16 1 x FDR

• Nice ! It works. Write/read rates limited mainly by bandwidth to storage.

pHDF5, image like data, compression filter
typical figures

2021-07-08 European HDF Users Group Summer 20217

compression write
[GB/s]

read
[GB/s]

ntasks
(omp)

comment

pwrite no 5.8 4.8 8 1 x FDR

pread-eiger bslz4 - 23.8 ✓ 20(2) compression rate: 8.1

pwrite-bslz4 bslz4 4.9 (?) - 24(2) compression rate: 8.1

• Table: raw i.e. uncopressed data rates
• 4.9 / 8.1 ~ 0.6 GB/s - storage is likely not a bottleneck
• bslz4 compression is very effective, in particular at least 2x faster
• uncompressed write faster than compressed, read OK
• with multiple files, VDS, in-memory bslz4 compression and direct chunk write

better performance can be achived

• parallel HDF5 is great but writing data with compression-filters is not so shiny (?)

