
SlideRule

APIs

Data Algorithms

H5Coro:	The	Cloud-Optimized	
Read-Only	Library

European	HDF	Users	Group
JP	Swinski/NASA/GSFC

July	7,	2021

1

SlideRule

APIs

Data Algorithms

Consider…

Science product services
running in AWS that
access H5 data in S3

Fortran programs run on
supercomputer clusters
that generate the official

ICESat-2 H5 data
products

Python scripts written
by researchers that
read H5 files stored
locally

…all use the same underlying HDF5 library.

2

SlideRule

APIs

Data Algorithms

Historically, the application’s use of the HDF5 library
was tuned for each environment the application ran in.

But that is not working well for cloud environments;
to address this challenge, various efforts are looking to:

Restructure the
H5 data inside the

file (repack)

Overlay cloud
optimized indexes

on the H5 files

Reformat the data
into cloud native

formats
3

SlideRule

APIs

Data Algorithms

This presentation argues to add a fourth option to the mix:
instead of changing the data, change the library

Given that there is currently only a single implementation of the HDF5
format in use – the HDF5 library, it becomes the de facto standard; and
the limitations of the library become the limitations of the format. If
the library performs poorly in a cloud environment, it is said that the
format is not suited to the cloud environment.

4

SlideRule

APIs

Data Algorithms

The HDF5 Cloud-Optimized Read-Only (H5Coro)
library is a first attempt at this new approach,
undertaken by ICESat-2’s SlideRule project.

5

SlideRule

APIs

Data Algorithms

What	is	H5Coro
H5Coro	is	a	C++	module	inside	the	SlideRule	server	that	was	
written	from	scratch	and	implements	a	performant	HDF5	
reader	for	H5	files	that	reside	in	S3.

Data	Model:	
1. Data	is	static	(write	once,	read	many)
2. Data	is	time	series,	sequentially	stored	in	memory	
3. S3	is	high	latency	and	high	throughput

Implementation:
C++	library	that	strives	to	minimize	the	number	of	I/O	
operations	through	caching	and	Range	GET	heuristics.

6

SlideRule

APIs

Data Algorithms

Agenda

I. SlideRule	Project	Background

II. Obstacles	in	Our	Initial	Design

III.The	H5Coro	Library

7

SlideRule

APIs

Data Algorithms

What	is	SlideRule

• SlideRule	is	a	server-side	framework	implemented	in	C++/Lua	that	
provides	REST	APIs for	processing	science	data	and	returning	results.	

• The	project	is	a	collaboration	between	University	of	Washington	and	
Goddard	Space	Flight	Center,	funded	by	the	ICESat-2 program.		The	initial	
target	application	is	processing	the	lower-level	ICESat-2	point-cloud	and	
atmospheric	datasets	for	seasonal	snow	depth	mapping	and	glacier
research.	

8

SlideRule

APIs

Data Algorithms

Project	Goals

(1) Cost	effective
• Near	zero	costs	incurred	when	not	in	use
• Ability	to	scale	in	a	cost-controlled	way	to	handle	processing	demand

(2) Responsive	Results
• For	interactive	sessions,	the	results	for	areas	like	Grand	Mesa	should	be	returned	quickly	enough	that	the	user	doesn’t	go	off	and	do	something	else
• For	integrated	services	(other	software	systems	using	our	system	as	a	service),	the	results	for	very	small	areas	should	be	returned	quickly	enough	that	they	

can	integrate	it	into	their	systems	without	losing	the	attention	of	their	users.

(3) Simple,	well	documented	API
• Public	sliderule-python	repository	with	packages	available	in	PyPI (pip),	and	Conda
• Very	small	learning	curve	with	behavior	matching	expectations

(4)	Ability	to	easily	integrate	other	large	datasets
• GLAH12,	Tan-DEM-X,	Hi-MAT	DEM	

(5)	Highly	configurable	processing	engine
• Able	to	target	a	wide	range	of	science	use-cases	without	becoming	overly	complex 9

SlideRule

APIs

Data Algorithms

SlideRule	Components
• Client	side	Python packages	for	easy	interfacing
• Back-end	data	services	provided	by	HSDSwith	data	stored	in	AWS	S3
• CMR used	for	data	set	queries		

10

User

Cloud

SlideRule

APIs

Data Algorithms

SlideRule’s	Integration	with	HDF5

AWS S3 AWS EC2
SlideRule Application

HSDS
(service node)

HSDS
(service node)HSDS

(data node)HSDS
(data node)

dockerdocker

HDF5 Library

(service node)
REST-VOL

docker
h5 files stored

as objects

h5 file metadata
repository

11

SlideRule

APIs

Data Algorithms

Limitations	of	Initial	Design

12

SlideRule

APIs

Data Algorithms

Limitations	of	Initial	Design

Using	the	HDF5	library	presented	certain	obstacles	to	us	achieving	
our	goals	– namely	reaching	a	balance	between	having	a	cost	
effective	system	and	a	responsive	system.	

• All	read	calls	into	the	HDF5	library	are	serialized	

• HSDS	issues	multiple	HTTP	requests	per	H5	dataset	chunk

• HSDS	requires	a	metadata	repository

13

SlideRule

APIs

Data Algorithms

Obstacle	1:	HDF5	Serializes	Requests

• All	read	calls	into	the	HDF5	library	are	serialized	inside	the	library	
due	to	a	global	API	lock.		

• Even	though	SlideRule	issues	many	dataset	read	requests	
concurrently,	and	HSDS	is	capable	of	tremendous	parallelism,	the	
number	of	actual	concurrent	reads	to	S3	was	limited	to	those	
associated	with	one	dataset	at	a	time due	to	those	requests	being	
serialized	at	inside	the	HDF5	library.

14

SlideRule

APIs

Data Algorithms

HDF5	Serialization	of	Reads	– 1	Thread

15

SlideRule

APIs

Data Algorithms

HSF5	Serialization	of	Reads	– 3	Threads

16

SlideRule

APIs

Data Algorithms

The	Cost	of	Parallelism

• The	HDF5	library	prevents	an	application	from	using	an	asynchronous or	
multithreadedmodel	to	achieve	parallelism,	and	forces	a	process or	
distributedmodel.

• While	large	systems	will	still	typically	grow	at	the	process	and	instance	
(distributed)	level,	ignoring	gains	in	parallelism	at	the	lower	levels	is	
inefficient	and	costly.

• We	found	it	an	order	of	magnitude	more	complex	to	replace	call-backs	and	
threads	in	our	server	code	with	Docker	containers.

Resource intensity
Asynchronous Thread Process Distributed

17

SlideRule

APIs

Data Algorithms

Obstacle	2:	Chunk	Size	Dependency

• HSDS	issues	multiple	HTTP	requests	per	H5	dataset	chunk	being	
read.		

• The	chunk	size	of	the	dataset	is	the	single	greatest	factor	in	how	
performant	the	read	is.		

• Datasets	that	consist	of	many	small	chunks	explode	the	number	of	
TCP/IP	socket	connections	that	are	needed	and	the	per-read	
latencies	dominate	overall	performance.

18

SlideRule

APIs

Data Algorithms

HSDS	Performance	Test	Results

Format Layout Instance Type Data Nodes Http Compression Duration (seconds)

Local File Chunk:(80KB) c5.xlarge n/a n/a 10

Native Ingest n/a c5.xlarge 4 Yes 60

Link Option Chunk:(80KB) c5.xlarge 4 Yes 990 to 1050

Link Option Chunk:(80KB) c5.xlarge 4 No 1150

Link Option Chunk:(80KB) c5.xlarge 8 Yes 990

Link Option Chunk:(80KB) c5.4xlarge 16 Yes 620

Link Option Chunk:(143KB) c5.xlarge 4 Yes 370

Link Option Chunk:(50MB) c5.xlarge 4 Yes 60

Link Option Continuous c5.xlarge 4 Yes 30 to 50
Notes:
1. Read a total of 718MB of data out of 72 different datasets inside a large (~2GB) h5 file.
2. The c5.xlarge instance has 4 cores, 8GB of RAM, and up to 10Gbps of network connectivity.
3. All test runs used only one service node.
4. No caching was used, all data was fetched fresh from S3 19

SlideRule

APIs

Data Algorithms

HSDS	Performance	w/	Original	Layout

Performance is dominated
by the number of chunks
being read. This suggests
that the per-chunk
overhead drives
performance.

20

Se
co
nd
s/
By
te

Se
co
nd
s/
By
te

SlideRule

APIs

Data Algorithms

HSDS	Performance	w/	14x	Chunk	Size

empty empty

By reducing the number of
chunks per dataset by 14x
there are no longer any
outliers driving the
performance.

21

SlideRule

APIs

Data Algorithms

First	Byte	Latency	Measurements

AWS is showing ~60ms
of latency per request
to S3; but internal
HSDS logs show closer
to ~50ms of latency.

22

SlideRule

APIs

Data Algorithms

Challenges	in	Chunk	Size	Selection
• Optimizing	for	a	given	spatial	extent	is	not	possible	because	the	ICESat-2	data	is	dynamic	– 10MB	of	
photons	in	one	part	of	the	file	may	represent	1Km	and	in	another	part	of	the	file	may	represent	10Km.

• Optimizing	for	request	size	is	not	possible	because	we	are	an	on-demand	data	processing	system.		
One	user	may	be	looking	at	a	narrow	spatial	region	that	benefits	from	smaller	chunk	sizes,	while	another	
user	may	be	sweeping	large	areas	looking	for	features	in	the	data.

• We	attempted	to	use	the	“break-even”	size,	which	is	when	the	amount	of	time	it	takes	to	read	the	data	
matches	the	request	latency	penalty	(e.g.	if	your	data	throughput	is	1Gbps	and	latency	is	50ms	per	
request,	the	chunk	size	is	the	amount	of	data	that	can	be	read	at	1Gbps	over	50ms	à 50Mbits).		When	a	
chunk	size	matches	this	size,	then	the	worse	case	penalty	paid	for	a	request	is	2x.
• How	do	you	determine	what	the	expected	latency	and	throughput	are?
• AWS	S3	and	lower-tier	EC2	instance	can	experience	large	variations	in	network	performance.

23

SlideRule

APIs

Data Algorithms

Obstacle	3:	Metadata	Repository

• A	metadata	repository	is	needed	to	hold	pointers	into	the	original	H5	
files	which	HSDS	uses	to	know	how	to	read	the	various	datasets	in	the	
file.		

• Before	any	H5	file	in	S3	can	be	read	by	our	system,	it	must	first	be	
loaded through	an	HSDS	pipeline	to	build	and	store	the	metadata	for	it.		
A	typical	region	of	interest	consisting	of	60	granules	can	take	~8	hours	
to	load	using	a	single	c5.xlarge	EC2	instance.

• The	metadata	repository	must	be	maintained	in	order	to	use	HSDS.		A	
gap	in	funding	which	could	result	in	the	loss	of	the	S3	bucket	would	
required	the	entire	repository	to	be	rebuilt.

24

SlideRule

APIs

Data Algorithms

The	Need	for	a	Data	Pipeline

• Building,	maintaining,	and	running	a	data	pipeline	is	expensive	and	time	
consuming:
• read	ICESat-2	data	hosted	by	NASA
• re-chunk	it	to	optimize	its	chunk	sizes	for	S3	access
• upload	it	to	our	own	S3	bucket
• load	it	into	HSDS	to	build	and	store	the	metadata	HSDS	needed

• With	tooling	we	had	at	the	time,	we	were	able	to	fully	load	about	5GB	of	data	
per	hour	per	EC2	instance.		

• Assuming	ICESat-2	produces	150TB	of	data	each	year,	this	would	require	us	
to	fully	automate,	maintain,	and	continuously	run	a	pipeline	consisting	of	four	
EC2	instances	365	days	a	year,	just	to	keep	up	with	the	new	data	ICESat-2	
produces;	that	doesn’t	take	into	account	historical	data	backlogs	and	re-
releases	due	to	version	updates.

25

SlideRule

APIs

Data Algorithms

The	HDF5	Cloud-Optimized	Read-Only	Library
(H5Coro)

26

SlideRule

APIs

Data Algorithms

Architectural	Change

H
5
C
O
R
o

Replacing HDF5/REST-VOL & HSDS with and internal,
statically linked module that directly reads H5 files
from S3

27

SlideRule

APIs

Data Algorithms

Architecture	with	H5Coro

28

H
5
C
O
R
o

SlideRule

APIs

Data Algorithms

Where	H5Coro	Fits	In

New Architecture
SlideRule Application

AWS S3

H5Coro

docker

Previous Architecture
SlideRule Application

HSDS
(service node)

HSDS
(service node)HSDS

(data node)HSDS
(data node)

dockerdocker

HDF5 Library

(service node)
REST-VOL

docker

h5 files stored
as objects

h5 file metadata
repository

New Architecture
SlideRule Application

AWS S3

H5Coro

docker

Previous Architecture
SlideRule Application

HSDS
(service node)

HSDS
(service node)HSDS

(data node)HSDS
(data node)

dockerdocker

HDF5 Library

(service node)
REST-VOL

docker

h5 files stored
as objects

h5 file metadata
repository

29

SlideRule

APIs

Data Algorithms

Key	Features

• All	reads	are	concurrent.		Multiple	threads	within	the	same	application	can	issue	read	
requests	through	H5Coro	and	those	reads	will	get	executed	in	parallel.

• Intelligent	range	gets are	used	to	read	as	many	dataset	chunks	as	possible	in	each	read	
operation.		This	drastically	reduces	the	number	of	HTTP	requests	to	S3	and	means	there	is	no	
longer	a	need	to	re-chunk	the	data	(it	actually	works	better	on	smaller	chunk	sizes	due	to	the	
granularity	of	the	request).

• The	system	is	serverless.	H5Coro	is	linked	into	the	running	application	and	scales	naturally	
as	the	application	scales.		This	reduces	overall	system	complexity.

• No	metadata	repository	is	needed.	 Instead	of	caching	the	contents	of	the	datasets	which	
are	large	and	may	or	may	not	be	read	again,	the	library	focuses	on	caching	the	structure	of	
the	file	so	that	successive	reads	to	other	datasets	in	the	same	file	will	not	have	to	re-read	and	
re-build	the	directory	structure	of	the	file.

30

SlideRule

APIs

Data Algorithms

Performance	Test

A	series	of	side-by-side	performance	tests	were	run	against	
SlideRule	using	HSDS	and	H5Coro.

• The	tests	were	run	from	a	local,	US	east	coast,	home	computer

• A	Python	script	made	four	concurrent	processing	requests	to	a	single	
SlideRule	instance	running	in	AWS	us-west-2.		

• The	processing	request	was	to	calculate	elevations	for	the	Grand	Mesa	
region	and	required	a	total	of	66	granules	to	be	read	from	S3.		

• HSDS	was	deployed	on	the	same	EC2	instance	as	SlideRule	and	consisted	
of	a	single	service	node	and	eight	data	nodes.

31

SlideRule

APIs

Data Algorithms

Performance	Comparisons

Library File Storage File Structure Cached Instance Time (secs)

HDF5/REST-VOL S3 Original Yes c5.2xlarge 9559 (~2 ½ hrs)

HDF5/REST-VOL S3 Original No c5.2xlarge 9029

HDF5/REST-VOL S3 Repacked No c5.2xlarge 3215

HDF5/REST-VOL S3 Repacked Yes c5.2xlarge 3157

H5Coro S3 Repacked No c5.xlarge 368

H5Coro S3 Repacked Yes c5.xlarge 336

HDF5 Ext4 Original No desktop 154

H5Coro S3 Original No c5.xlarge 116 (~2 mins)

H5Coro S3 Original Yes c5.xlarge 72

H5Coro Ext4/Buffered Original No desktop 56
32

SlideRule

APIs

Data Algorithms

Performance	Results

• For	test	runs	where	no	caching	was	used,	H5Coro	
performed	77x	faster.

• For	test	runs	where	cachingwas	used,	H5Coro	performed	
132x	faster.

• It	is	typical	for	us	to	now	process	regions	that	used	to	take	
1	½	hours,	in	25	seconds.	

33

SlideRule

APIs

Data Algorithms

H5Coro	API
info_t H5Coro::read (const char* url,

const char* datasetname,
RecordObject::valType_t valtype,
long col,
long startrow,
long numrows,
context_t* context=NULL)

where
url the fully qualified path to the H5 file (i.e. s3:///mybucket/folder/myfile.h5)
datasetname the full path to the name of the dataset within the H5 file
valtype the data type of the data to be returned; the recommended type is DYNAMIC, which tells the

library to return the data in the type it is stored as in the file
col the column to be read from multi-dimensional datasets; in order to read from multiple columns,

multiple reads are needed
startrow the starting row in the dataset to read from
numrows the number of rows in the dataset to read
context an opaque handle to a context structure which holds cached information about the file so that

future read operations do not have to re-read metadata portions of the file
info_t a structure holding the contents of the data read from the H5 file along with useful metadata like

the data type 34

SlideRule

APIs

Data Algorithms

Caching

• A	local	file	cache is	used	to	store	blocks	of	the	H5	file	being	read.		A	minimal	cache	line	size	is	
configured	at	compile	time	and	works	on	the	assumption	that	the	fields	being	read	from	the	
internal	structures	of	the	H5	file	are	often	near	each	other.		The	local	file	cache is	maintained	
in	the	context	pointer	optionally	passed	to	the	H5Coro::read	call.		This	allows	applications	
which	read	multiple	datasets	from	a	single	file	to	re-use	the	local	file	cache between	those	
reads.		It	is	also	important	to	note	that	dataset	contents	are	not	cached,	this	maximizes	the	
available	memory	in	the	cache	for	file	structure	metadata.

• A	global	dataset	cache is	used	to	store	the	metadata	information	of	a	dataset.		Given	there	
are	only	a	few	pieces	of	information	needed	in	order	to	know	how	to	read	a	dataset,	the	
H5Coro	library	maintains	a	large	set	of	the	most	recently	read	datasets.		If	the	dataset	is	
requested	again,	the	library	does	not	need	to	re-traverse	the	H5	file	structure	in	order	to	
arrive	at	the	necessary	data	object,	but	can	skip	directly	to	the	step	where	the	start	and	stop	
addresses	of	the	data	are	guessed	at	and	the	data	contents	are	read.

35

SlideRule

APIs

Data Algorithms

HDF5	Specification	NOT Supported

The	following	portions	of	the	HDF5	format	specification	are	intentionally	not	
implemented:

• All	write	operations
• File	free	space	management
• File	driver	information
• Virtual	datasets

The	following	portions	of	the	HDF5	format	specification	are	intentionally	
constrained:

• Datasets	with	dimensions	greater	than	2	are	flattened	to	2	dimensions	and	left	to	the	user	
to	index.

• Only	sequentially	stored	data	can	be	read	at	one	time,	hyperslabs are	not	supported.
• Data	type	conversions	are	supported	for	fixed	and	floating	point	numbers	only,	but	the	
intended	use	of	the	library	is	to	return	a	raw	memory	block	with	the	data	values	written	
sequentially	into	it,	allowing	the	user	to	cast	the	memory	to	the	correct	array	type. 36

SlideRule

APIs

Data Algorithms

Support	for	HDF5	File	Structures

Format Element Supported Contains Missing

Field Sizes Yes 1, 2, 4, 8 bytes

Superblock Partial Version 0 Version 1, 2, 3

B-Tree Partial Version 1 Version 2

Group Symbol Table Yes Version 1

Local Heap Yes Version 0

Global Heap No Version 1

Fractal Heap Yes Version 0

Shared Object Header Message Table No Version 0

Data Object Headers Yes Version 1, 2

37

SlideRule

APIs

Data Algorithms

Support	for	HDF5	Messages
Format Element Supported Contains Missing
Shared Message No Version 1
NIL Message Yes Unversioned
Dataspace Message Yes Version 1
Link Info Message Yes Version 0
Datatype Message Partial Version 1 Version 0, 2, 3
Fill Value (Old) Message No Unversioned
Fill Value Message Partial Version 2 Version 1, 3
Link Message Yes Version 1
External Data Files Message No Version 1
Data Layout Message Partial Version 3 Version 1, 2
Bogus Message No Unversioned
Group Info Message No Version 0
Filter Pipeline Message Yes Version 1
Attribute Message No Version 1
Object Comment Message No Unversioned
Object Modification Time (Old) Message No Unversioned
Shared Message Table Message No Version 0
Object Header Continuation Message Yes Version 1, 2
Symbol Table Message Yes Unversioned
Object Modification Time Message No Version 1
B-Tree ‘K’ Value Message No Version 0
Driver Info Message No Version 0
Attribute Info Message No Version 0
Object Reference Count Message No Version 0 38

SlideRule

APIs

Data Algorithms

Support	for	HDF5	Storage,	Types,	Filters
Format Element Supported Contains Missing

Compact Storage Yes
Continuous Storage Yes
Chunked Storage Yes
Fixed Point Type Yes
Floating Point Type Yes
Time Type No
String Type No
Bit Field Type No
Opaque Type No
Compound Type No
Reference Type No
Enumerated Type No
Variable Length Type No
Array Type No
Deflate Filter Yes
Shuffle Filter Yes
Fletcher32 Filter No
Szip Filter No
Nbit Filter No
Scale Offset Filter No

39

SlideRule

APIs

Data Algorithms

H5Coro	Implementation	Limitations

• The	H5Coro	library	was	written	to	optimize	access	to	numerical	time-series	datasets	which	
are	chunked,	compressed,	and	stored	sequentially	in	memory.		This	layout	is	exploited	in	
order	to	quickly	determine	the	start	and	stop	location	of	the	data	to	be	read.

• The	H5Coro	library,	as	written,	would	not	work	well	subsetting image	data.	Subsetting to	a	
spatial	region	is	likely	to	cause	the	requested	data	chunks	to	be	located	in	non-sequential	
memory	locations	within	the	file.		Such	a	layout	is	not	anticipated	by	the	heuristics	used	
inside	H5Coro	for	constructing	read	requests	to	S3,	and	would	result	in	non-optimal	
performance.

• While	the	current	implementation	of	H5Coro	is	poorly	suited	for	such	applications,	the	
overall	approach	taken	by	the	H5Coro	still	applies,	and	minor	modifications	to	the	internal	
heuristics	used	by	H5Coro	could	produce	drastic	improvements	in	performance	for	image	
data.

40

SlideRule

APIs

Data Algorithms

Acronyms
API	 Application	Program	Interface
AWS	 Amazon	Web	Services
EC2	 Elastic	Compute	Cloud
GSFC Goddard	Space	Flight	Center
HDF5 Hierarchical	Data	Format	version	5
HTTP Hypertext	Transfer	Protocol
ICESat-2 Ice,	Cloud,	and	land	Elevation	Satellite,	2nd generation
IO	 Input	/	Output
IP Internet	Protocol
NASA National	Aeronautics	and	Space	Administration
NSIDC	 National	Snow	and	Ice	Data	Center
REST Representational	State	Transfer
S3	 Simple	Cloud	Storage	Service
TCP Transmission	Control	Protocol

41

SlideRule

APIs

Data Algorithms

BACKUP

42

SlideRule

APIs

Data Algorithms

ICESat-2	Program	Information

Mission
• Ice, Cloud, and land Elevation Satellite (ICESat-2) launched on September 15, 2018, with a three-year minimal mission life
• The Advanced Topographical Laser Altimetry System (ATLAS) is the sole instrument; it fires a laser towards earth 10,000 times

a second and measures the amount of time it takes individual photons to reflect of the earth’s surface and return back to the
spacecraft.

• The individual photon time measurements are used to calculate surface elevations to a cm-level resolution.

Data
• ICESat-2 produces about 150 TB/year of low-level data.
• At 100Mbps egress, it would take 4.5 months to retrieve one year of data.
• Continuous aggregated egress rate varies depending on the network infrastructure. Over Internet2, rates as high as

400Mbps can be achieved, which still puts the time needed to retrieve the data at about five weeks.

Algorithms
• ICESat-2 has two low-level data products – one used to study surface elevations, and one used to study atmospheric layers
• NASA provides seven Level-3A ICESat-2 data products covering a range of anticipated science applications
• NASA provides nine Level-3B ICESat-2 data products that target more specific science applications

43

SlideRule

APIs

Data Algorithms

SlideRule	Project	Objectives
Project Objective: Promote new scientific discovery by lowering the barrier of entry to using the ICESat-2 data.

Tie-In to NASA’s Mission: To make NASA datasets which are publicly available, practically accessible.

Problem Statement: The amount of data produced by ICESat-2 and the computational resources required by the
algorithms that process the data, creates an often insurmountable barrier of entry to using the lower-level ICESat-2 data
products. As a result, the typical use of ICESat-2 data is constrained to the pre-launch predicted science applications for
which higher-level data products are generated.

Proposed Solution: Develop and deploy a publicly accessible ICESat-2 science data service that provides science data
products generated on-demand using parameters supplied by researchers at the time of the request.

Key Benefits:
• There is a one-to-one mapping between resources spent producing data products and which data products are being

used by the community.
• Unforeseen science applications are supported, with no additional cost, by the same system that supports the primary

science objectives of the mission.
• The service-based architecture promotes integration with other agencies and organizations to improve the products

and services they provide.
• Improvements to the algorithms that process the lower-level science data are immediately made available to the user

communities (there is no longer a need to reprocess hundreds of terabytes of data, host the new version, and require
users to re-download the data when a change is made in the processing algorithms). 44

