- HDF5 Community BOF - Agenda

HDF5 update

Virtual Object Layer (VOL) and connectors

DAOS VOL, Subfiling, Querying

Applications - CGNS, E3SM, HACC

Applications - EQSIM, AMReX (Nyx and Castro)

Q&A

Elena Pourmal, The HDF Group
Quincey Koziol, NERSC / LBNL
Scot Breitenfeld, The HDF Group
Scot Breitenfeld, The HDF Group

Houjun Tang, LBNL

—
S, \
\ EXASCALE
) COMPUTING
\ PROJECT
S

LI\
g W g |
BERKELEY LAB The HDF Group

HDF5 Update

~
A
rrrrrrr ""|

March 30, 2021

ECP HDF5 BOF

——

_\(\’ Q\) > SRR The HDF Group and ExalO team @LBNL

[N =
(g g |
The HDF Group

" HDF5 in a nutshell

« HDF5 is a data model, I/O library
and binary format for storing and

managing data Keep Metadata

with Data

* One of the most used 1I/O libraries
and file formats across DOE

* Maintained and developed by
The HDF Group in collaboration
with the ExalO ECP team

» Originally designed for storing data
on POSIX FS; extended to other storage

wiopeld
SS0.D)

©

[N =
(g g |
The HDF Group

Community involvement and outreach

« HDF5 is on GitHub https://github.com/hdfgroup/hdf5
« The HDF Group holds

 Bi-monthly Webinars/Tutorials and weekly face-to-face teleconferences with HDF5 users
» HDF User Group (HUG) Meetings (2019, 2020, and 2021 is in planning stage)

» Performance improvements and contributions to other software
(netCDF-4, CGNS, h5py)

c G Ns“ 100000 Day

—e—Baseline Chartarea

—e—Add MetaData BCast Before HDF5 optimization (Day)
—&-Improved N->1
—4—File-per-Processor (fpp)
1000 = ——MPI_BCast()

—s—Serial Reference

10000

After HDF5 optimization (minute)

e
2
§ 10 Baseline - File per MPI rank
o
E 1 g Second
=
§
$
3
]
w

X i 3
\ EXASCALE
MPI Ranks E (l)I:’ COMPUTING
0.001 PROJECT
3 32 64 128 256 512 1,024 2,048 4,096 8,192 16,384 32,768 \\.,

Courtesy Greg Sjaardema, Sandia National Labs

[N =
(g g |
The HDF Group

Accessing data on “non-Posix” storage
« HDF5 VOL connectors (HDF5 VOLs)

» Cloud, Object Store HDF5 Tools Test Suite] ternal
« Example: DAOS VOL connector
* Introduces new features to HDF5 JRRa
» Asynchronous I/0O VOL Layer
* Independent HDF5 metadata updates i
* New HDF5 object - maps Native VOL
External
Synchonous mmmmsm Asynchronous s HDF5 (DFS) m— mdtest (DFS) mmm— HDF5 (DAOS) VFD Layer T DAOS VOL
10000 2000 VOL Connector
8000 O .
2 1500 LL]
g 6000 | 9% &
" POSIXAPI ~S~_ DAOSAPI
g g e Sa S
S s00 Through
2000 | MP| |/O

’ " \
0 :
4K 16K 64K 256K 1M 4M 16M 64M 256M 1G Group create Dataset create \ géﬂgﬁﬁ‘_ﬁ%
Transfer Size (Bytes) Operation \) PROJECT
4 Lo

[N =
(g g |
The HDF Group

HDF5 development to improve I/0 performance

« ECP features (details later today)
« HDF5 VOLs (Async, Cache VOLs, HDF5 GPU VFD)
» Sub-filing - a compromise between file-per-process and a single shared file;
implemented as HDF5 Virtual File Driver (VFD)

* Performance Tools Enhancements

 Multi-level 1/O tracing tool Recorder is now in Spack
 Jupyter notebook tutorial for working with Darshan HDF5 output; GitHub source

» Performance study of ECP applications (FLASH, NWChem, Chombo,
QMCPack and HACC)

 Publish findings and recommendations in a white paper.

« HACC with HDF5 delivers comparable performance with pure MPI-IO implementation by
tuning stripe settings on Lustre and the HDF5 alignment parameter or metadata block
sizes.

-~
\\ EXASCALE
) COMPUTING
\ PROJECT
.

[N =
(g g |
The HDF Group

"HDF5 Benchmark

» hdf5-iotest benchmark

» Exercises different organization of data in HDF5 files using different HDF5 features
(chunking, collective and independent I/O modes, datasets of different dimensionality,
alignment, alignment threshold, and metadata block size; each configuration writes
80MBs per time stamp); available in Spack

Columns

Column 1 Column 2 Column 3

. Row1 il 12 B e — L A
A Simple Problem %
- o o | 2 311 312 313 »Array 3
Writing multiple 2D array variables over time: = [
k<l 332 333
ACROSS P processes arranged in a R x C process grid Figure: GeeksForGeeks

FOREACH step 1 .. S
FOREACH count 1 .. A
CREATE a double ARRAY of size [X,Y] | [R*X,C*Y] (strong | weak)
(WRITE | READ) the ARRAY (to | from) an HDF5 file
END
END
END

S(teps) = 20, A(rrays) = 500, X = 100, Y = 200 (See adios_iotest)

-~
\\ EXASCALE
) COMPUTING
\ PROJECT
.

[N =
(g g |
The HDF Group

"HDF5 and Spack

« The HDF Group is now an official maintainer of HDF5 in Spack

« GNU Autotools builds and testing
» Defaults to HDF5 1.10.7 parallel

« Command “spack install hdf5”
* Maintenance releases 1.12.0, 1.10.0-1.10.7, 1.8.10 — 1.8.22 are also available

« Imminent change (in review by the Spack team)
CMake builds and testing
Szip compression (licensed) is replaced with its OS version (libaec)

Added three maintenance branches 1_12,1_10, 1_8
« Command “spack install hdf5@develop-1.12"

Added HDFView

-~
\\ EXASCALE
) COMPUTING
\ PROJECT
.

[N =
(g g |
The HDF Group

"HDF5 and Spack

 Additional variants (prototypes) in progress
 Additional compression plugins (registered with The HDF Group)
+ BITGROOM, BLOSC, BSHUF, BZIP2, JPEG, LZ4, LZF, MAFISC, ZFP, SZ, and ZSTD
» ExalO HDF5 VOL connectors (Async, Cache, external pass-through)
+ Example: command “spack install
hdf5~zfp~mafisc+szip~zstd~blosc~bshuf~bitgroom+av~pv~cv+mpit+threadsafe”
disables everything except szip, mpi, and threadsafe. The +av means to build Async VOL.

 Additional HDF5 releases in progress

« HDF5 1.13.* (from develop branch) for the early releases of ECP productized features
» Async, Cache, Pass-through VOLs
« DAOS VOL
« GPU VFD
« Datalib VOL
« ADIOS VOL
« GPU VOLs

» VOL connectors have to pass external VOL test suite

-~
\\ EXASCALE
) COMPUTING
\ PROJECT
.

[N =
(g g |
The HDF Group

HDF5 Resources

» Check documentation on https://portal.hdfgroup.org
« Send email to help@hdfgroup.org
* Join https://forum.hdfgroup.org/

» Attend THG Webinars and Tutorials
* Announced on HDF-FORUM, ECP Training Events page and ECP Training Newsletter

* New: Call the Doctor - The Weekly HDF clinic (on Tuesdays at 8:30 am
or 1:00 pm Central)

Questions?

Proprietary and Confidential. © 2016, The HDF Group.

HDF5: Virtual Object Layer

ECP HDF5 Birds-of-a-Feather
March 30, 2021
Quincey Koziol
koziol@Ibl.gov

AAAAAAAAAAAAAAAAAA

Many Team Members and Contributors

« LBNL: Suren Byna, Houjun Tang, Tony Li, Bin Dong
* ANL: Venkat Vishwanath, Huihuo Zheng, Paul Coffman

« The HDF Group: Scot Breitenfeld, Elena Pourmal, John
Mainzer, Richard Warren, Dana Robinson, Neil Fortnher, Jerome

Soumagne, Jordan Henderson, Neelam Bagha, ...
» Northwestern University: Kai-yuan Hou
 North Carolina State University: John Ravi

March 30th, 2021 2 E\(C\\)P

EEEEEEEE
CCCCCCCCC
EEEEEEE

Overview

« HDF5 Virtual Object Layer (VOL) Introduction
« ECP VOL Connectors

» Asynchronous /O
* Node-local Caching

 GPU-IO
« GPU Direct Storage (GSD) HDF5 Virtual File Driver

.
\
March 30th, 2021 ; E\(\C\)F’ e

HDF5 Virtual Object Layer (VOL)

« VOL Framework is an abstraction layer within HDF5 Library

 Redirects I/0O operations into VOL “connector”, immediately after an API
routine is invoked

* Non-1/O operations handled with library “infrastructure”

* VOL Connectors
 Implement storage for HDF5 objects, and “methods” on those objects
« Dataset create, write / read selection, query metadata, close, ...

« Can be transparently invoked from a dynamically loaded library, without
modifying application source code

» Or even rebuilding the app binary!

» Can be stacked, allowing many types of connectors
« “Pass-through” and “Terminal” connector types

—_
March 30th, 2021 4 E \(E\\) P Eég%?j&

HDF5 Containers (Files)

HDFS5 files, groups, HDF5 datasets

and links and attributes
organize store
Configuration: Standard 3 a p p I icati O n d ata .

data objects.

Parameters
10;100;1000

lat |'lon | temp
S | R | I

121 231 3.1

: 151 241 4.2
Timestep 'J’;J 211 3.6
36,000

_—
\\ EXASCALE
) COMPUTING
\ PROJECT
S

VOL: High-Level Overview

Application

v

HDF5 API

Virtua
Objec
Layer
(VOL)

.

e —

Connectors

Operations on a container

p———— =

Terminal |Pass-through

2 V.

rrrrrrrrrr

L=
s
LAY The HDF Group

B =

J

Argon ne° March 30th, 2021

NNNNNNNN

AAAAAAAAAA

All other
HDF5

routines

HDF5 Library
Infrastructure

ECP

EXASCALE
COMPUTING
PROJECT

Virtual Object Layer (VOL) Connectors

» Implement callbacks for HDF5 data model operations

» “Terminates” call by performing action directly, or “passes operation
through” by invoking VOL API connector interface:

» Pass-through - can be stacked, must eventually have terminal connector
« Examples:
* Provenance tracking
* Asynchronous I/O
« Caching
« Terminal - non-stackable, final connector
« Examples:
* Remote access (e.g. cloud, streaming, etc)
» Non-HDF5 file access (e.g. ADIOS BP, netCDF “classic”, etc)
» Object stores (e.g. DAOS, S3, etc)

oy
March 30th, 2021 , EK(E\\/F’ e
\—

VOL: Connector Architecture

) 6 N
8 2 HDF5 APl and language bindings
0 5\(4
é — Virtual Object Layer (VOL) Framework
¢ Pass-through VOL connectors (e.g., async 1O, provenance) R
Y 3 4 Y 3\l 8
s | & (g5
0 8 % § wn [8- —
8 E < Qo o %)
I & m a
> <
A / _ A /
L
= <>

—_
March 30th, 2021 8 E \(\E\\) P Eé@?@?ﬁ
S

Async VOL Connector

 Pass-through VOL connector

« Can be stacked on any other connector, to provide asynchronous
operations to it

» Uses an “event set” to manage async operations
« Can extract more performance, e.g. enable async read and write:

Write Write Write Write
T1 T2 Tn-1 Tn
A f Time saved
Compute | Compute | Compute Compute | Wait
Async T1 T2 T3 | Tn1 Tn A \
Time >
Compute | Write | Compute | Write | Compute Compute | Write
Sync T1 T1 T2 T2 Ts || Taa Tn

—_
March 30th, 2021 9 E K(C\\) P Eég%?j\%

Async VOL Connector

 Pass-through VOL connector

« Can be stacked on any other connector, to provide asynchronous
operations to it

» Uses an “event set” to manage async operations
« Can extract more performance, e.qg. enable async read and write:

rite Write Write
T1 T2 o Th-1 Thn
Time saved
Compute | Compute | Compute Compute | W
Async T1 T2 T3 | Tn1 Tn
Time >
Compute | Write | Compute | Write | Compute Compute | Write
Sync T1 T1 T2 T2 Ts || Tna Tn

—_
March 30th, 2021 10 E \(\C\\) ID Eégfpé'isﬁs
St

Async VOL Connector

 Pass-through VOL connector

« Can be stacked on any other connector, to provide asynchronous
operations to it

» Uses an “event set” to manage async operations
« Can extract more performance, e.g. enable async read and write:

Write Write Write rite
T1 T2 Tn-1 Tn
A f Time saved
Compute | Compute | Compute Compute | Wait
Async T1 T2 T3 | Tn1 Tn A \
Time >
Compute | Write | Compute | Write | Compute Compute | Write
Sync T1 T1 T2 T2 Ts || Taa Tn

—_
March 30th, 2021 11 E \(\E\\) P Eég%?j\%
S

Async VOL Connector — Benefits

AMReX Single-level Plotfile 385GB x 5 timestep on Summit AMReX Multi-level Plotfile 559GB x 5 timesteps on Summit

== HDF5 == HDF5-Async 100
== HDF5 == HDF5-Async
1000
50

- 0
0 ©
E 100 =
= S
) T 10
T 2
= 3
ke 5
- : -
9 3
ol - o
O ——
1 1
64 128 256 512 64 128 256 512
Number of nodes (6 process per node) Number of nodes (6 processes per node)
B ¥ =\
rn A S March 30th, 2021 12 =l \) [P et
r On ne PROJECT
A The HDF Group g \\v

Async VOL Connector — Programming Example

fid =
gid =
did =
status

status

<other

H5Fopen(..);
H5Gopen (£fid, ..);
H5Dopen (gid, ..);

= HS5Dwrite (did,

= HS5Dwrite (did,

user code>

<)

<)

March 30th, 2021

13

ECP

EXASCALE
COMPUTING
PROJECT

frrerrerer

BERKELE

Async VOL Connector — Programming Example

es _1d = H5EScreate();
fid = HS5Fopen_async (.., es id);

gid H5Gopen_async (fid, .., es id)
did = H5Dopen_async(gid, .., es id)
status = H5Dwrite async(did, .., es

status = H5Dwrite async(did, .., es

<other user code>

H5ESwait (es_id);

N LN
| LA ponne®
I‘}B The HDF Group NATIONAL LABORATORY

’
’

_id);

_id);

March 30th, 2021

//
//
//
//
//
//
//
//

//
/7

Create event set for tracking async operations
Asynchronous, can start immediately
Asynchronous, starts when HbFopen completes
Asynchronous, starts when H5Gopen completes
Asynchronous, starts when HbSDopen completes,
may run concurrently with other H5Dwrite in event set
Asynchronous, starts when HbSDopen completes,
may run concurrently with other H5Dwrite in event set

Wait for operations in event set to complete, buffers
used for H5Dwrite must only be changed after wait

© ECP

EXASCALE
COMPUTING
PROJECT

Async VOL Connector — Programming Example

es_id = H5EScreate();
fid = HS5Fopen_async (.., es_id);

gid
did
status = H5Dwrite async(did,

status = H5Dwrite async(did,

<other user code>

H5ESwait (es_id);

o
Argonne
by b The HDF Group NATIONAL LABORATORY

H5Gopen_async (fid, .., es_id);
H5Dopen_async(gid, .., es_id);
., es_id);

., es_id);

March 30th, 2021

//
//
//
//
//
//
//
//

//
/7

Create event set for tracking async operations
Asynchronous, can start immediately
Asynchronous, starts when HbFopen completes
Asynchronous, starts when H5Gopen completes
Asynchronous, starts when HbSDopen completes,
may run concurrently with other H5Dwrite in event set
Asynchronous, starts when HbSDopen completes,
may run concurrently with other H5Dwrite in event set

Wait for operations in event set to complete, buffers
used for H5Dwrite must only be changed after wait

. ECP

EXASCALE
COMPUTING
PROJECT

Async VOL Connector — Programming Example

es_id = H5EScreate(); //
fid = H5Fopen_async(.., es_id); //
gid = H5Gopen_async (fid, .., es_id); //
did = H5Dopen_async (gid, .., es_id); //
status = H5Dwrite_async(did, .., es_id); //

//
status = H5Dwrite_async(did, .., es_id); //

//
H5ESwait (es_id); //

//

= A LN
’\H I A Argonne° March 30th, 2021

?EBKELEY L&B The HDF Group NATIONAL LABORATORY

Create event set for tracking async operations
Asynchronous, can start immediately
Asynchronous, starts when HbFopen completes
Asynchronous, starts when H5Gopen completes
Asynchronous, starts when HbSDopen completes,
may run concurrently with other H5Dwrite in event set
Asynchronous, starts when HbSDopen completes,
may run concurrently with other H5Dwrite in event set

Wait for operations in event set to complete, buffers
used for H5Dwrite must only be changed after wait

16 ’:\\ EXASCALE
E\(\g [EEEe

Async VOL Connector

e Available now: htips://github.com/hpc-io/vol-async

e Future work:

e Switch to TaskWorks thread engine
o A portable, high-level, task engine designed for HPC workloads
o Task dependency management, background thread execution.

e Merge compatible VOL operations
o If two async dataset write operations are putting data into same dataset, can merge into only one call to
underlying VOL connector
o Turn multiple ‘normal’ group create operations into a single ‘multi’ group create operation

e Use multiple background threads
o Needs HDF5 library thread-safety work, to drop global mutex

LN P
™/ Argonne) March 30th, 2021 17 E\(\@\\)P Eég%?ﬁs

-Cache VOL Connector - Integrating node-local
storage into parallel I/0

Typical HPC storage hierarchy

Remote storage

Node-local storage (SSD, NVMe, etc)

Theta @ ALCF: Lustre + SSD (128 GB / node),
ThetaGPU (DGX-3) @ ALCF: NVMe (15.4 TB / node)
Summit @ OLCF: GPFS + NVMe (1.6 TB / node)

March 30th, 2021

Cache VOL

* Using node-local storage for caching / staging
data for fast and scalable 1/0.

* Data migration to and from the remote storage is
performed in the background.

* Managing data movement in multi-tiered
memory / storage through stacking multiple
connectors

* All complexity is hidden from the users

Repo: https://github.com/hpc-io/vol-cache.git

18 ’:\\ EXASCALE
E\(\g [EEEe

Parallel Write (H5Dwrite)
1. Data is synchronously copied from the

memory buffer to memory mapped files
on the node-local storage using POSIX |/0.
2. Move data from memory mapped
Node-local storage file to the parallel file system

asynchronously by calling the dataset
write function from the Async VOL

stacked below the Cache VOL
Parallel file system ﬁ i 3. Wait for all the tasks to finish in
Shared HDFS file H5Dclose() / H5Fclose()
W/O caching Compute I/0 (RAM—->PES) Compute
w/ caching Compute RAM->NLS| Compute

Partial overlap of compute with |/0 [/0:NLS->PFS

Details are hidden from the application developers.

—_
March 30th, 2021 19 E \(\C\\) ID Eégfpé'isj\%
S

Parallel Read (H5Dread)

Create memory mapped files and attached them
to a MPI_Win for one-sided remote access

Node—local[@ @ @ @} MPI_Win
storage

/ ‘Mp| put‘ 2. Caching data

/
Compute
node RAM

Single shared HDF5 file

First time reading the data

e

March 30th, 2021

AAAAAAAAAAAAAAAAAA

. [
using MPI_Put
1. Reading data
from parallel file
Parallel file system system w/o Caching

w/ Caching

One-sided communication for accessing

remote node storage.

« Each process exposes a part of its memory to
other processes (MPI Window)

« Other processes can directly read from or write
to this memory, without requiring that the
remote process synchronize (MPI_Put, MPI_Get)

1

Reading data from
‘L NLS using MPI_Put

Compute I/O0 Compute

<=

Compute 11O Compute

Reading the data directly from node-local storage

20 "—\\\ EXASCALE
E\(\g [EEEe

frrerrerer

103 { mmm w/o cache (Lustre)
. w/ cache (SSD)
B w/ cache (RAM)

Parallel write

102 4

(%]
(]
0
~
an]
(O]

1 2 4 8 16 32 64 128 256 512
Number of nodes

Parallel write performance on Theta w/ and w/o caching data on
RAM or node-local SSDs. (Lustre stripe count is 48, and Lustre stripe
size is 16MB). Each processor writes 16 MB data to a shared file.

A\
i

LI
March h, 2021
m Argonneo arch 30th, 20

PER!(FLEY LA,B The HDF Group NATIONAL LABORATORY

Performance evaluation on Theta @ ALCF

I w/o caching (Lustre)
B w/ caching (SSD)

200 1
175 1
150 1

125
1004 Parallel read

te (GiB/sec)

Read ra
U
o wu

1 2 4 8 16 32 64 128
Number of nodes

Parallel read performance on Theta. At each step, each processor
reads a random batch (32) of samples (224x224x3) from a shared
HDFS file. All the processors together read the entire dataset in one
iteration. The read performance is measured after the first iteration
finishes.

2 1 ,:\\ EXASCALE
E\(\g [EEEe

VCD100: VOL Connector Development 100

» Subscribe to the hdf5vol mailing list:
« Email hdf5vol-subscribe @hdfgroup.org with “subscribe” as subject

 Clone the “external pass-through” example VOL connector

* An “external” VOL connector that has all VOL callbacks implemented as
transparent “no-ops”, just invoking the underlying VOL connector

« External VOL connectors can be loaded with environment variables

« https://bitbucket.hdfgroup.org/projects/HDF5VOL/repos/external pass_through
/browse

 Build the external pass-through connector with logging enabled:
 Follow instructions in README in the git repo

* Modify to your purposes

—_
March 30th, 2021 22 E K(E\\) P Eég%?j\%
S

- GPU-I/O - Fast data access from GPU Memory

API

C++/FORTRAN/Python

HDF5 Library

Virtual File
Layer

o HDFS5 File File on
S |- Parallel Other
ot Filesystem

A
March 30th, 2021 23 E\(\E\\)F’ B
==

- GPU-I/O - Fast data access from GPU Memory

API

Java C++/FORTRAN/Python

HDF5 Library

Virtual File
Layer

o HDFS5 File File on
S |- Parallel Other
ot Filesystem

A
March 30th, 2021 20 E\(\E\\)F’ B
==

HDF5 GDS Virtual File Driver (VFD)

 Drop-in replacement for POSIX I/O VFD
» Therefore: serial 1/0 only, currently

 Single API call to enable from applications:
« H5Pset_fapl_gds()

* Ready for beta testers:
— Passing all the HDF5 regression tests:

— Available on the ‘cu_devVv’ branch of
HDF5 git repo:
* https://github.com/hpc-io/hdfS/iree/cu dev

March 30th, 2021

2

Ul

=P

EXASCALE
COMPUTING
PROJECT

HDF5 GDS VFD - Early Performance Results

5 mmm Pageable Read Rate mmm Pageable Write Rate
mmm Pinned Read Rate mmm Pinned Write Rate
mmm GDS Read Rate 4 mmm GDS Write Rate

w4 m
o o
m ea)
e e
o) o 3
T 3 ©
o o
Q Q
T T

2
2 2
s s
Q Q
(@) 1 (@] 1 ‘

0 0

128 256 512 1024
I/O Slze (MB) I/O Slze (MB)
HDF5 GDS Read HDF5 GDS Write
(Single thread, one GPU I/0 to a single NVME drive)
N m °
frreeeer 2 21
s Argonne March 30th, 20

ated The HDF Group

NATIONAL LABORATORY

128 256 512 1024

2

(o)}

-
\\ EXASCALE
) COMPUTING
\ PROJECT
S

- HDF5 GDS VFD - Parallel I/0

HDF5 Application
Compute\ /Compute\ Compute
node node

HDFS Library

—
HDFS5 file on Parallel File System

Switch network + I/O servers

LN =\
rrrrrrrrr =P s March 30th, 2021 27 E(C P ==
EEEM The HDF Group Argonne 7= \(\... / T

- DAOS VOL Connector

file.h5

NATIVE VOL
(default)

« HDF5 VOL connector for I/0 to Distributed
Asynchronous Object Storage (DAOS)

https://github.com/HDFGroup/vol-daos

« Minimal code changes needed to use,

enable via environment variables or through
HDF5 APls.

* HDF5 Tools are supported
« h5dump, h5Is, h5diff, h5repack, h5copy, etc

« Supports async I/0

EEEEEEEE
CCCCCCCCC
EEEEEEE

[® VPIC - explicit async (ANL testbed)

450 ‘
BN cparticle
400 L B iparticle |
[ehydro
[ihydro
350 - [fields 7
300 - - |
@ 250] .
o
B _
= 200 - 7
150 - |
100 - N
50 - .
= = =

16 16(async) 32 32(async) 64 64(async) 128 128(async)

Number of Processes

0
rrr:rrr b N = \ EXASCALE
ﬂ e G',oup Argg,.rmgﬁ E\(\Q\F’ =

k9 subfiling

 Subfiling is a compromise between file-per-process (fpp) and a single
shared file (ssf)

« Multiple files organized as a Software RAID-0 Implementation
i. Configurable “stripe-depth” and “stripe-set size”
ii. Adefault “stripe-set” is created by using 1 file per node
iii. A default “stripe-depth” is 32MB

« One metadata (.h5) file stitching the small files together

RAID 0

striping

 Benefits
» Better use of parallel I/0 subsystem
* Reduces the complexity of fpp

* Reduced locking and contention issues to improve performance at larger
processor counts over sff

Subfilin
- g For Subfiling, the HDF5 content is separated into

two components:

1. The Metadata — written to a regular HDF5 file
1. Final implementation has metadata embedded

in subfiles

2. The RAW data — written logically to a RAID-0
file, and is spread over a number of individual
files, each managed by an I/O concentrator.

I/0 Concentrator

| Node-local Storage
(optional)

VHDF5 File Persisted to Disk The resulting collection can be read using Sub-

. QQQQQQQQQQQQQ] filing or eventually coalesced via a post-

DlskArchltecture and Layout of Data on Disk processing step into a single HDF5 file.

a. I/0 Concentrators are implemented as independent threads attached to a normal HDF5 process.
b. MPI is utilized for communicating between HDF5 processes and the set of /O Concentrators.
c. Because of (b), applications need to use MPI_Init_thread to initialize the MPI library.

—
S, \
\ EXASCALE
) COMPUTING
\ PROJECT
S

- Subfiling

Initial Results
(hSbench - vpicio)

« Parallel runs on SUMMIT
showing results from 256

to 16384 cores.

« The number of Subfiles
utilized range from 6 (for a
256 MPI rank application

VPIC-10 (WRITE) MB/second

700000

600000
HDF5

SUBFILING
500000

400000
300000

200000

)
2
o
O
w
(2
N
2]
2
T
-
a
3
8
2
g
(1]
w
=
g
3

run) to 391 (for the 16K *

MPI rank application); % X

based on 42 cores per szl 20 sz o3
NUMBER OF CORES

node.

—_
March 30th, 2021 5 E \(\E\\) P Eégfpégj\%
S

D Feature: Querying datasets #

Objective

» Create complex queries on both metadata and data elements within a
HDF5 container

* Retrieve the results of applying those query operations.
Solution

 HDF5 index API routines allow the creation of indexes on the contents
of HDF5 objects, to improve query performance

« HDF5 query API routines enable the construction of query requests for
execution on HDF5 containers

H5Qcreate

* H5Qcombine

H5Qapply

H5Qclose

N — ¥ HDF5 github repo containing the querying and indexing source code: e

https://github.com/HDFGroup/hdf5/tree/feature/indexing \ P exAscALe
-1 Argonne & E\(C\)F’ =t
ot e s e HDF Group — © wnouatissosarons

- Querying and Indexing

/

Timestep1

O/

AN

Temperature Press

rd

ure

T

: -

-

(1

Timestep2

Y

VO

N

Timestep3

0

AN

Temperature Pressure

Temperature Pressure

\

-

(a) Container with data element query applied

AAAAAAAAAAAAAAAAAA

Timestep1

e
/Q\

Temperature Pressure

' :#

pe

Timestep2

N

A

4

(2

/

AN

Timestep3

0

AN

Temperature Pressure

e

Temperature Pressure

'

T

[]

(b): HDF5 container with combine query applied

EXASCALE
COMPUTING
PROJECT

ECP

- Querying and Indexing

Build Index (seconds) Evaluate Query (seconds)

1.4

80 1.2
L 60 - 1
& < 08
= 40 £ 06

|_

50 0.4
0.2

0 0

1 2 4 8 16 32 1 2 4 8 16 32

of MPI procs # of MPI procs

Parallel scaling of index generation and query resolution is evidenced even for small-
scale experiments.

—
S, \
\ EXASCALE
) COMPUTING
\ PROJECT
=

frrerrerer

—
N — \ EXASCALE
emrerins [l Argonne° Miarch 30t 2021 10 E\(\C\)lz’ CovELTRG
rematal The HDF Group —

cfd data standard

 CGNS = Computational Fluid Dynamics (CFD) General Notation System

 An effort to standardize CFD input and output data including:
 Grid (both structured and unstructured), flow solution
» Connectivity, boundary conditions, auxiliary information.

* Two parts:
« A standard format for recording the data
« Software that reads, writes, and modifies data in that format.

« An American Institute of Aeronautics and Astronautics Recommended
Practice AIAA

Shaping the Future of Aerospace

—
S, \
\ EXASCALE
) COMPUTING
\ PROJECT

- Useful for monitoring HDF5 Performance

CGNS serial make, Je]]yntimes=10

— 8 T
|72
<
g
s 7r]
%}
Nz
3 6f .
5
75 0
st |
iz
S
2 4t |
&
2,
£
&
@)
o I i
£
= 0

Cololaldololadololdaoldolodololodal 2l Ll L7 7,7 %

‘L@ Pl @ e e e e e e e e e e 0, s %

R A '/030'// o lp Yy -/J\;O-/(7 s lp o Ny 0.0;00., N NN N <, %,

Q{E}j szé @{&z
4 4 . 7 [1.10 L12
HDFS version
ey LI =\
':m\'"\ Pl A ° March 30th, 2021 12 = ((\)P EoMPOT NG
EGRI The HDF Group ' |8 o Soswon \&= FReseeT

- Useful for monitoring HDF5 Performance

CGNS benchmark_hdf5, Summit (ORNL)?Procs=1764.ntimes=4

45

40 - 4

AR A AN, AR A AN, /7 v Y VY @
d’d’d’d’d’d’d’o"d’d’d’&d’d’&d’ PRV PRRIRAY IR d
2P 9 /0;00 DGy /00/6 > lp g Y 0@0 9595 4y A5 4520 o~ %,
e e e
7 s , s (110 L2
HDFS5 version

/\\‘ # m ’;\\\ EXASCALE
~Lw/s ° March 30th, 2021 13 I:)
EER!(»&B‘ The HDF Group Arggmnngoumn o E \(\g) IEEI\D/IJPEUJ-II—NG

- Improve the performance of reading/writing
H5S_all selected datasets

(1) New in HDF5 1.10.5

1000
o |f: j

* All the processes are 100 ¢ 8
reading/writing the same data ’

« And the dataset is less than 10 | -
2GB) f - of

\% ! 1""}"
* Then E LF ' ‘,.-""' —+— ALL READ, NPROCS=768]

* The lowest process id in the = , e -~ ALLREAD NPROCS-1536
communicator will read and 01k e et ALL READ, NPROCSL3072 ¢
broadcast the data or will write : e "% READ FROCOBCAST NPROCS-3072 |
the data. 001 boer*"" ¥ +-4 -+ READ-PROCO-BCAST, NPROCS=6144 |

A F—+— ALL READ, NPROCS=12288]
- < -1 READ-PROCO-BCAST, NPROCS=12288
(2) Use of compact storage, or ! |

. . 0001 L L L L L M| L L L L L M| L L L
Flor C.OlgnpaCt Stora%e’ thlS same 1 10 100 1000 10000 100000
algorithm gets used. Read Size (MiB)

N P
CLA agomne™ E\(\g\)F’ =LA

The HDF Group & wrowsiusonsror

- SCALING OPTIMIZATIONS

100000
—e—Baseline Chart Area

—e—Add MetaData BCast
—&-Improved N->1
—4—File-per-Processor (fpp)
1000 = ——MPI_BCast()
—s—Serial Reference

10000

100

10

/ ORIGINAL

Hour

READ-PROCO-AND-BCAST
WITHIN APPLICATION

\
\ COMPACT STORAGE

O
Q
2
Q
£
-

Execution Time (seconds)

0.01

MPI Ranks
32 64 128 256 512 1,024 2,048

Greg Sjaardema, Sandia National Labs

LIz
L/
a2 The HDF Group

AAAAAAAAAAAAAAAAAA

Second FILE_PER-PROCESS

MPI_Bcast

4,096 8,192 16,384 32,768

CGNS

cfd data standard

IXASCALE
_-OMPUTING
ROJECT

D Challenging HDF5 Use Cases

* Ideally, HDF5 parallel performance should be comparable (or
better) to raw binary I/O.

* Issues with third-party libraries (netCDF, CGNS...) using HDF5:

« Can be metadata heavy due to the need to conform to a standard format.

* The standard’s format may dictate raw data output pattern.
* May lead to optimal write performance but poor read performance, or vice-versa.

 Mitigating performance issues

* Implement new features in HDF5 to address metadata performance
» Collective metadata, using the core file driver for metadata creation, etc...

« Work with third-party libraries to use parallel file system friendly HDF5
schemes.

LN .
L/ Argonne; March 30th, 2021 16 E\(C\\)P Eég?@fﬁs

[® E3sm

E3SM: Earth system model |
development and simulation Summit (ORNL) Dimension Scale Study "imes=5
project 0.035

] 0.03
Levels of library usage:

« Scorpio: A high-level Parallel
|/O Library for structured grid

T T
B H5DS by All Ranks
B H5DS by One Rank

o
=
o
R O

H5DS* Time (s)
)
e}
O

application. 0.01
* NetCDF: software libraries and 0.005
machine-independent data formats 0
that support the creation, access, ’?’/,e
and sharing of array-oriented Number of Ranke
scientific data.
- HDF5
B ¥ =\
/1) March 30th, 2021 17) EOMPUTING
The HDF Group *"82MNS.. E\(\g L

[® E3sm - E3SM-10°

Issue

« E3SM-IO writes hundreds of variables, contributing to small portions of spatial-temporal
values for each of the variables. Note they can be out of order (in each dimension).

* When flattened to file views, data from a process can be highly non-contiguous.

Investigation

« Alternate implementation using only HDF5 (or PnetCDF), no third-party libraries
« Avariable is expressed by an HDF5 dataset.
Rank O initializes metadata for the final HDF5 file.
HDF5 hyperslab is used to merge 2D/3D requests for a dataset into a single data space.
Memory space is sorted accordingly to align with the newly created dataspace.
Multi-dataset implementation can merge the collective write for all datasets into a single one.

Performance (Cori: 338 nodes, 21362 processes, 14.7GiB)
« HDF5 write performance (data only): 19.4s

* PnetCDF write performance (data only): 19.0s

» Tuning metadata write performance is in-progress

[1] https://github.com/QiaoK/E3SM-IO
[¥ —

S,
\ EXASCALE
~wm March 30th, 2021 18 \ COMPUTING
W e HDF Group Argg,r,mg‘) o RRRRRR = \(C [e

- HACC/GenericlO Study [1]
Write Pattern Effects — Data location in the file
Pattern 1 — HDF5 pattern

Variable 1 Varlable 2 (v2) Varlable N (vN)

,»;'», % %fﬁ

Variables are contiguously stored in the file

Pattern 2 — MPI-IO pattern (or HDF5 compound datatype)
V2 VN V1 v2

Variables are interleaved in the file

[1] https://portal.hdfgroup.org/display/HDF5/Parallel+HDF5?preview=%2F50904591%2F62458303%2FAn_I0_Study_of ECP_Applications-2020-10-19.pdf

—
S, \
\ EXASCALE
) COMPUTING
K PROJECT
\—

[® HACC-10: MPI vs HDF5, why HDF5 is slow?

Example of access patterns with 8 ranks writing 9GB.

data.mpi data.h5
1.0008+10 ¢ 1.000e+10
E = read 1. - - T T 1 = read
8.000e+9 4) 1 il - .
¢ 1 == Write L0006 H - - T = WTite
., 06.000e+9 E I t . 6.000e+9 1° - L - - = T
Q i QO T - - =
0 . 3 - =
&] i 1. . - ®
Q 4.000e+9 4 C 4.000e+9 3 i
2.000e+9 I 2.000e+9 } = T T - = - o=
0.000e+0 1 I 0.000e+0 - = - * T
B B I B B I e B B
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Rank Rank
MPI-10 Access Pattern HDF5 with individual dataset
LN\ X S
LA Argonne° E\(\C\)F’ CoEEs
LN The HDF Group ' © anow sowron —

[® HACC-10: MPI vs HDF5

« Same access pattern, but why MPI is faster?

read P_oooom H5Dopen2

.5152639999999913

openca h000004 MPI Beast —3.4720360000000072
MPI_Comm size - h00019899999999999963 H5Fclose 1111.736943000000018
MPI_Comm rank P.00026199999999999975 H5Pset_fapl mpio I38,645505999999995
unlink — h0010669999999999998 fsync .161‘90578799999992

umask - h002468999999999989 MPI File sync 161.9176529999997

mmap - h01257600000000003 M PI On Iy MPI_File_open 195.23960900000003 H DF5

.
$ 1seek-|o.o3286999999999985 é read -488_4871760000023
=
E cmse—*106993200000000128 & MPLFil read at 188.6345039999978
MPI_Reduce - h10109000000000047 H5Dread 489.03935599999926
opm\—kx5807950000000015 H5Fflush 16.6966140000001
MPI_Barrier - b,9220439999999992 MPI Barrier 990.6089910000062
worie oo - [JI 26 05059000000004 il B i e MPI_File_write_atis slower
MPI File open - _393.428448 M in HDF5?
[}

H5Dwrite 1381.5694129999918

MPI_File write at

L B T A e o e o e e B e e S B e e
0 500 1000 1500 2000 2500 3000

Spent Time (Seconds)

7693810 © HSDopen2 ['id', ‘o'l . e ‘ + HDF5 writes 2048 bytes
7093856 © H5Sselect ersla file space id > , '(nil) > 2 . .
7093860 0 H5S t hyperslab ['mem space id . (nil) . (nil)'] metadata at the beginning

7093864 7147935 © HSDw dset id', 'HST NATIVE DOUBLE, f 3 x2aaaca of the file.

7094119 7147912 © MPI File write at ['0x8a6c58 Ix2aaacae4b010', '8388608', 'MPI BYTE TFFFe : .

7094136 7094142 © lseek [2048", '0'] * This causes the alignment

7094144 7147900 0 write ['8', (2aaacae4b010 issue for the data writes.

7147940 7148015 H5Dclose ['dset id']
S,
C\\ EXASCALE
E ()P COMPUTING
\\ PROJECT
St

8
8

f\‘ | Argonne°

EEBKELEY LAB The HDF Group NATIONAL LABORATORY

[® HACC-10: MPI vs HDF5

Study Summary

« HDF5 can use a different data layout to achieve similar MPI-10
access patterns.

« Stripe settings of the parallell system significantly effects write
performance.

* The default metadata header can greatly slow down the write
performance.

* Proper alignment or metadata data blocksize can deliver similar HDF5
performance as a pure MPI-10 implementation

HDF5 Application Use Cases

EQSIM, Castro, Nyx

Houjun Tang, Berkeley Lab

EQSIM

« High-Performance, Multidisciplinary Simulation
for Regional-Scale Earthquake Hazard and Risk
Assessments

* Provide the first strong coupling and linkage
between simulations of earthquake hazards
(ground motions) and risk (structural system
demands).

« SW4, main code to simulate seismic wave
propagation.

March 30th, 2021

ECP

EQSIM Workflow

Geophysics —> Engineering >

Regional-scale Geophysics ground motion Infrastructure response Infrastructure
domain simulations simulations demand / risk
(billions of zones) (thousands of stations)

» Seismologists sets up an earthquake event for simulation.
Various input data
« SW4 generates and outputs ground motions for specified locations.
1D, 2D, 3D, 4D output data
» Analysis codes (OpenSees, ESSI) produces building response.
Visualization and analysis data

—_
March 30th, 2021 3 E \(\C\\) |: Eég?;gj&
—

SW4 |/0 pre HDF5 integration

 Input
* Material model and topography: rfile (binary). |
 Forcing function: SRF (ASCII).
« Station location: input file (ASCII).

- Output geo»»vm;ﬁ%f& E’f |

100 — 200 km

« Time-series
« Station output: USGS (ASCII), or SAC (binary), 10k+ files, a few MB each.
» Subsurface output: N/A, 4D, 30+ TB.

» Image: sw4img (binary), 2D or 3D, MB to GB.

» Checkpoint: sw4chk (binary), 3D, 40+ TB.

March 30th, 2021 4 E\(C\\)F’ SrETe

SW4 |/0 with HDF5 integration

 Input
« Material model and topography: sfile: V2 size, 3x faster, new curvilinear grid.
» Forcing function: SRF-HDF5: 1/3 size, 5x faster.
 Station location: inputHDF5: single file.

* Output

* Time-series
 Station output: SAC-HDF5: 1/5 USGS, same as SAC, single file.

» Subsurface output: SSI, with ZFP compression (155GB / 38TB), 3x
faster.

* Image: imgHDF5, same as native, easy to access.
» Checkpoint: chkHDF5 with ZFP compression (WIP).

March 30th, 2021 5 E\(C\\)F’ SrETe

BERKELEY LAB

Linrence Berksey National Laboatory

AMReX Applications

« AMReX is a software framework for massively parallel, block-
structured adaptive mesh refinement (AMR) applications.

« HDF5 output format is supported for writing plotfiles and particle
data, asynchronous I/O can also be enabled.

Nyx is an adaptive mesh, massively-parallel,
cosmological simulation code.

/V%x

Castro is an adaptive-mesh compressible radiation / MHD / C&[0
hydrodynamics code for astrophysical flows. &

March 30th, 2021 6 E\(E\\)F’ S
=

BERKELEY LAB

Linrence Berksey National Laboatory

Results on Summit

200
@® HDF5 m Async-explicit
150
@
[
E
=
o 100
o
()
>
1Sy
b 50
o]
© l—/—/.\.
0
© 9 5 ® ®
W » © 2)
o® O ok " \63‘6\7’

Number of processes / number of nodes

Single-level (Nyx) Workload

- = \
] o
At The HDF Group

March 30th, 2021

Argonne°

NATIONAL LABORATORY

Observed I/O time (s)

200

150

100

50

® HDF5 m Async-explicit

.//

—

AO 2 (Y > o
96\ ,\g'l\'b ,5%5‘\6 ‘\‘E)Cb\'\(L ,\4_,'56\16

Number of processes / number of nodes

Multiple-level (Castro) Workload

’;\\\ EXASCALE
T 0P B
o

HDF5 Tutorial at the ECP Annual Meeting 2021
April 16", 10:00 am - 1:30 pm ET

https://ecpannualmeeting.com

HDF5 User Group meeting (HUG 2021)
October 12-15, 2021

Call for papers and presentations
https://www.hdfgroup.org/hug/hug21

March 30th, 2021 2 E\(\C\\)P

EEEEEEEE
CCCCCCCCC
PPPPPPP

Thanks and contact info

« Contacts
— Suren Byna (LBNL) SByna@Ibl.gov
— Scot Breitenfeld (The HDF Group) brtnfld@hdfgroup.org
— Quincey Koziol (LBNL - NERSC) koziol@lbl.gov
— Elena Pourmal epourmal@hdfgroup.org

HDF5 User Support:
HDF Helpdesk: help@hdfgroup.orq
HDF Forum: https://[forum.hdfgroup.org/

N\ -
=P, S ; D s
Tt Argonne’™) E(C P =5

