
ermesH
March 26th 2021

Webinar

2

Hermes Webinar
March 26th, 2021

Agenda

● Hermes Project Overview
● Hermes in Detail
● Hermes Related Work
● Data Placement in Distributed Hierarchical Environments
● Hermes Container Library
● How can I use Hermes?
● Demo
● How can I get involved?

ermesH
Project Overview

4

Hermes Webinar
March 26th, 2021

● Traditionally memory systems and
storage demonstrate wildly different
performance.

○ Access latency
○ Bandwidth
○ Data representation

● Applications experience performance
degradation due to slow remote
access to storage.

I/O Performance Gap

Memory
e.g., DRAM

I/O Performance Gap

Parallel File System (e.g., disks)

5

Hermes Webinar
March 26th, 2021

● Modern storage system designs
include multiple tiers of storage
organized in a deep distributed
storage hierarchy. The goal is to
mask the I/O gap.

● Each system is independently
designed, deployed, and managed
making very difficult to reap the
benefits of the hierarchical storage.

Hardware Answer

I/O Performance Gap

Parallel File System (e.g., disks)

Memory
e.g., DRAM

Burst Buffers (e.g., SSD)

Local Flash Storage
(e.g., NVMe)

Far Memory
e.g., Xpoint

DataWarp,
IME, etc

PMFS, Nova, etc

Ext4, XFS, etc

Ideally, the presence of multiple tiers of storage
should be transparent to applications without

having to sacrifice I/O performance.

Hermes Project
The team

Collaborative project

funded by NSF

7

Hermes Webinar
March 26th, 2021

● A new, multi-tiered, distributed buffering
system that:

○ Enables, manages, and supervises I/O
operations in the Deep Distributed Storage
Hierarchy (DDSH).

○ Offers selective and dynamic layered data
placement.

○ Is modular, extensible, and
performance-oriented.

○ Supports a wide variety of applications
(scientific, BigData, etc.,).

Hermes Overview

Memory
e.g., DRAM

Parallel File System (e.g., disks)

Burst Buffers (e.g., SSD)

Local Storage
(e.g., NVMe)

Far Memory
e.g.,3DXpointHe

rm
es

8

Hermes Webinar
March 26th, 2021

● DDSH requires:
○ a scalable, reliable, and high-performance

software to efficiently and transparently manage
data movement.

○ new data placement algorithms, memory and
metadata management, and an efficient
communication fabric.

● Hermes strives for:
○ being application- and system-aware,
○ maximizing productivity and path-to-science,
○ increasing resource utilization,
○ abstracting data movement,
○ maximizing performance, and
○ supporting a wide range of applications

Objectives

ermesH
Hermes in Detail

10

Hermes Webinar
March 26th, 2021

● Buffer - Hermes-aware,
fixed-size storage, backed by
preallocated blocks.

● Blob - A finite sequence of
uninterpreted bytes. User
data. Gets stored in Buffers.

● Bucket - A collection of
named Blobs.

Abstractions

11

Hermes Webinar
March 26th, 2021

Abstractions
● VBucket - A collection of links to

Blobs. Can be decorated with Traits.

● Trait - Event handlers, called when
Blobs are linked (or unlinked) to
VBuckets.

○ Hierarchy placement

○ File-mapping

○ Filtering

○ Compression

○ Encryption

12

Hermes Webinar
March 26th, 2021

API Example

13

Hermes Webinar
March 26th, 2021

High-Level Architecture
● API

● Metadata Manager

● Prefetcher

● Buffer Pool Manager

● Data Placement Engine

● Buffer Organizer

● I/O Clients

ermesH
Related Work

15

Hermes Webinar
March 26th, 2021

● LBNL
o Data Elevator 2016 (https://github.com/hpc-io/vol-dataelevator)

▪ Data elevator: Low-contention data movement in hierarchical storage system, 2016 IEEE 23rd HiPC
○ Unified View of Storage (UniviStor) 2018

▪ UniviStor: Integrated hierarchical and distributed storage for HPC, 2018 CLUSTER
o Proactive Data Containers (PDC) 2018 (https://github.com/hpc-io/pdc)

▪ Proactive Data Containers (PDC): An Object-centric Data Store for Large-scale Computing Systems.
In AGU Fall Meeting Abstracts, vol. 2018, pp. IN34B-09. 2018.

o HDF5 Cache VOL 2020 (https://github.com/hpc-io/vol-cache)
▪ HDF5 Cache VOL: Efficient Parallel I/O through Caching Data on Node-local Storage, 2020 IPDPS

● LLNL
○ UnifyFS (https://github.com/LLNL/UnifyFS)

▪ Documentation https://unifyfs.readthedocs.io/en/latest/

Related work

https://github.com/hpc-io/vol-dataelevator
https://github.com/hpc-io/pdc
https://github.com/hpc-io/vol-cache
https://github.com/LLNL/UnifyFS
https://unifyfs.readthedocs.io/en/latest/

ermesH
Data Placement in

Distributed Hierarchical
Environments

17

Hermes Webinar
March 26th, 2021

● Every Hermes system instance includes one or more Hermes nodes.

● A target is a buffering resource that is identified by a pair of node + target
“coordinates”.

● Each target t_k has characteristics such as the following:
○ A capacity Cap[t_k]

○ A remaining capacity Rem[t_k]

○ A speed (or throughput) Speed[t_k]

Memory Hierarchy Targets

18

Hermes Webinar
March 26th, 2021

● Given N targets, a data placement policy P, an objective function F,
placement constraints C, and a set of Blobs.

● Problem: Place Blobs such that the P is followed, F is minimized/maximized,
and C is enforced.

● Tradeoff
○ Time to solution
○ Cost to move data
○ Load balance

The Data Placement Problem

19

Hermes Webinar
March 26th, 2021

Buffering System

● It is not practical to consider all available N targets in each data placement.
● By default placement starts with node-local targets, then with neighborhood

targets, then with global targets (three topologies of targets).

How to Place Blob(s) on Targets

 Node 1
Node-local RAM

Node-local NVMe SSD

Shared Burst Buffer

Parallel File System

 Node 2
Node-local RAM

Node-local NVMe SSD

 Node 3
Node-local RAM

Node-local NVMe SSD

 Node 4
Node-local RAM

Node-local NVMe SSD

20

Hermes Webinar
March 26th, 2021

● Random

● Round-Robin

● Linear Programming

Data Placement Solvers

21

Hermes Webinar
March 26th, 2021

● Randomly pick a target from
all targets, which has the
capacity greater or equal to
the BLOB size.

The Random Solver

A C

B

RAM

NVMe

Burst buffers

C

A

B

22

Hermes Webinar
March 26th, 2021

● Pick the next target if the
remaining capacity is greater
or equal to the BLOB size,
otherwise check the one after
the next target until a target
with enough capacity is
found.

The Round-Robin Solver

A C

B

RAM

NVMe

Burst buffers

C

A

B

23

Hermes Webinar
March 26th, 2021

● Minimize client I/O time.
● We use Google OR-Tools for

linear optimization.

The Linear Programming Solver

A C

B

RAM

NVMe

Burst buffers

C

A

B

ermesH
Hermes Container Library

H. Devarajan, A. Kougkas, K. Bateman, and X. Sun. "HCL: Distributing Parallel Data Structures in Extreme Scales."
In 2020 IEEE International Conference on Cluster Computing (CLUSTER). IEEE, 2020.

https://github.com/HDFGroup/hcl

https://github.com/HDFGroup/hcl

25

Hermes Webinar
March 26th, 2021

HCL Architecture

● Uses a hybrid data model data structure
access

○ Shared memory for intra-node
○ RPC for inter-node

● Uses STL data structures within shared
memory

● Uses three types of transports
○ RPC Lib: a C++ wrapper over rpc protocol
○ Thallium: a C++ wrapper over mercury-RPC

protocol
■ TCP
■ ROCE

26

Hermes Webinar
March 26th, 2021

Evaluation Results

ISx Benchmark Genome Contig Gen Genome k-mer counting

Key Observations
● Enables higher performance through hybrid data access model.
● Over 10x performance improvement.

ermesH
How can I use Hermes?

28

Hermes Webinar
March 26th, 2021

Hermes Adapter Layer

Applications can natively interact with Hermes
using existing I/O Interfaces

● Standard Interceptors
○ STDIO
○ POSIX
○ MPI-IO

● HDF5 Level
○ Hermes VFD
○ Hermes VOL

Hermes Core Library

Hierarchical Storage Hardware

Node-local RAM

Node-local NVMe SSD

Shared Burst Buffer

Parallel File System

HDF5

STDIO MPI-IO

HermesVFD

HermesVOL

Native

29

Hermes Webinar
March 26th, 2021

Deployment Models

Collocated

● Hermes Core is part of the application.
● Synchronization is managed internally by

hermes lib.
● Isolates buffering data across applications.

Decoupled

● Hermes Core is separate from the application.
● The Hermes core needs to be running before

the application.
○ Manually, or
○ as a service

● Can share buffering data across applications.
mpirun -n 1280 -f app_hf ./application

mpirun -n 32 -f hermes_core_hf ./hermes_core
mpirun -n 1248 -f app_hf ./application

ermesH
Demo

31

Hermes Webinar
March 26th, 2021

Hermes @Home Setup
● My Dell OptiPlex 7020 w/ [enhanced storage hierarchy] ™
● Running GNU Guix
● You can build Hermes from source

○ Spack
○ CMake

● I prefer the Docker image
● Two demos:

○ Hermes basics
○ UNIX STDIO adapter

● Demo source and details
SD Card

HDD

RAM + SSD

4 Tiers !!!
Dust

https://guix.gnu.org/
https://github.com/HDFGroup/hermes
https://hub.docker.com/repository/docker/hdfgroup/hermes
https://gheber.github.io/hermes-demo/

32

Hermes Webinar
March 26th, 2021

How Can I Get Involved?

● Github repo:
https://github.com/HDFGroup/hermes

● Create an issue to submit feedback, use
cases, or feature requests.

● Note: Hermes is still under active
development.

https://github.com/HDFGroup/hermes

Thank you.
Contact us

akougkas@iit.edu
gheber@hdfgroup.org

Multi-Tiered
Distributed I/O

Buffering System
Learn more

http://www.cs.iit.edu/~scs/assets/projects/
Hermes/Hermes.html

https://github.com/HDFGroup/hermes

https://github.com/HDFGroup/hcl

mailto:akougkas@iit.edu
mailto:gheber@hdfgroup.org
http://www.cs.iit.edu/~scs/assets/projects/Hermes/Hermes.html
http://www.cs.iit.edu/~scs/assets/projects/Hermes/Hermes.html
https://github.com/HDFGroup/hermes
https://github.com/HDFGroup/hcl

