Concurrent HDF5;
A Community Contribution

Proposal
Explore HDF5 MT-Safe Read

Quincey Koziol, LBNL
koziol@lbl.gov

November 13, 2020

mailto:koziol@lbl.gov

Team Members and Contributors

SNL: Lee Ward, Greg Sjaardema

LBNL: Suren Byna, Houjun Tang, Tony Li

The HDF Group: Chris Hogan, John Mainzer, Elena Pourmal
LLNL: Mark Miller

LANL: Brad Settlemyer

Northwestern University: Kai-yuan Hou

Why Concurrent Multi-Threaded Access Now?

e New technology drivers multi-threaded
o Al /ML packages like TensorFlow, PyTorch, etc
e CPU speed no longer the dominant form of improvements
o Lots of cores on a chip, with newer big.LITTLE arrangements that can
move |/O-bound code to slower, lower-power cores
e On-node / near-node memory & storage technologies incoming
o Benefit from low-priority “data mover” threads that need multi-threading in
HDF5
e Cloud storage here
o Also benefits from low-priority “data mover” threads

Project Purpose and Expectations

e Purpose: Make HDF5 safe for concurrent access with multiple threads

e Expectations
® Timely inclusion of the necessary changes within the production library
® With comfort to all parties -- as in, risk minimized or significantly mitigated and that the
changes contribute significantly in terms of performance and maintainability while
minimizing additional technical debt
® General buy-in:
® That the strategy and approach is correct, and acceptable in the main
® A critical technical review
® Adapting and evolving the strategy and approach to the point where it can be implemented
® Thisis a living document

® Negotiate what/how to do this so that all are comfortable and believe the purpose will be
achieved, as discussed above

You must engage and offer feedback!

Agenda

e Propose exploration of a concurrent, thread-safe H5Dread routine

® Discuss technical strategy
® But, this is a lengthy presentation so deep technical thoughts are best left to an offline forum
® Want those thoughts, just not as the presentation is given

e Describe tests for correctness and robustness
® Based on that technical strategy

e Discuss the opportunity for contributions to the effort by the HDF5 Community

Goals for Concurrent Multi-Threaded Access

e Long-Term
o Allow fully concurrent execution of all HDF5 API routines, from multiple threads
e Immediate
o Make a single HDF5 API routine threadsafe and concurrent when performing its primary
function, possibly under limited circumstances:
m Allow fully concurrent execution of H5Dread from multiple threads, all the way
down to pread() in the sec2 (POSIX) VFD
o Allow fully concurrent execution of multiple HDF5 API routines, down to a logically
appropriate level:
m Allow concurrent execution of all VOL operations, down to the callback to the VOL
connector

Goals for Concurrent Multi-Threaded Access

e Long-Term
o Allow fully concurrent execution of all HDF5 API routines, from multiple threads
e Immediate
o Make a single HDF5 API routine threadsafe and concurrent when performing its primary
function, possibly under limited circumstances:
m Allow fully concurrent execution of H5Dread from multiple threads, all the way
down to pread() in the sec2 (POSIX) VFD
o Allow fully concurrent execution of multiple HDF5 API routines, down to a logically
appropriate level:
m Allow concurrent execution of all VOL operations, down to the callback to the VOL
connector

MT-Safe H5Dread

e Constraints:

o Contiguous dataset layout

o Chunked, virtual, etc. in later extensions
Atomic (fixed-length) datatypes
No datatype conversions
No data transforms (i.e. H5Pdata_transform)
Serial I/0O

o sec2 (POSIX) VFD

e Support:

o H5Dread operations to same or different datasets
o Error handling

O O O O

Initial H5Dread Experiment

e Plan: Allow multiple threads to concurrently execute H5Dread operation

(@)

Remove the global API lock from H5Dread and reduce the lock granularity, while still
protecting shared data.

e Assumptions and Constraints

(@)

(@)

(@)

(@)

O

No errors are encountered.

All library initialization is complete before any thread calls H5Dread.
No threads are doing anything except calling H5Dread.

Library’s internal memory free lists are disabled.

"NDEBUG” is defined to disable asserts and other error checking.

e Test Program

(@)

(@)

(@)

Main thread opens an HDF5 file (8 64MiB datasets) and initializes the library.
Worker threads each read one dataset.
Workers join the main thread, which then closes the file and exits.

Results on Cori @ NERSC with Lustre

e With Global API Lock

h5dread_mt (TID: 13474)

func@0Oxdée20 (TID: 13502)

func@0xdée20 (TID: 13503)

func@0xdée20 (TID: 13504)

func@0Oxdée20 (TID: 13505)

func@0xdée20 (TID: 13506)

func@0Oxdée20 (TID: 13507)

func@0Oxdée20 (TID: 13508)

e Without Global API Lock

h5dread_mt (TID: 64664)

Thread (TID: 64696)

Thread (TID: 64694)

Thread (TID: 64691)

Thread (TID: 64695)

Thread (TID: 64693)

Thread (TID: 64692)

Thread (TID: 64690)

[/ [Running
(v [1Waits
v/ sa CPU Time
¥/ aaa Spin and Overhead Ti...
] @ CPU Sample
() 17 Transitions
CPU Utilization
() #aa CPU Time
() #aa Spin and Overhead Ti...

(¢) [Running

(¢ [Context Switches

¢/ aaa CPU Time

¢/ s Spin and Overhead Ti...
[@ Clocktick Sample

¥/ CPU Time

¢/ saa CPU Time
(¢/ s Spin and Overhead Ti...

Current Concurrency Control in HDF5

Future Concurrency Control in HDF5

| Kep |
U L ‘
@ e
8l5] L]| ®
gDDDE‘"

g @ Dy
L/ HDFG Library |

(Cﬁ(u avc/ec[Dd\'(a §+Vuc+u reg
¢ MM'{ R ¢

Concurrency Control - Now

Concurrency Control - Step 1

QQQ”'{VO\MVL Ve curs e

Reade rs/erito, (.
TAPT Lo ek

U v Mavo/ D
'/ jS'F’QCs‘J o‘“’:q

D@Lj - Ure.
@@ /) 0[’)’/
i

I DFS L ihror

-—

Concurrency Control - Step 1(a)

~—

(

A

pr

—

)

jy —

—

0
i

g

o b

v

_ 1/ Regh'{rah°ﬁ Ve““’f/‘t/
R—— Reade rs/ewr ©
WV" T €\ r/AP\ t Ie Lock
~L L\OC/('"
U

]

njsu m,e/@(l Do\ *fc‘

+r‘1 C+L&r95

K

dDF3

Libroe

* ~ Mm'{Q%

Concurrency Control - Step 2

| App ‘Z
N ReenTrant vecusiy
. RQMJQ rs/eur Yo, (ac/(-

1Lp\iﬂ,rjeri . Wriden s 5
f S APL LDC/('('
g & Doy 2| Vb~ unjsb.;ve/,gi Defo

® o | 0@ /) N rueture,

: ,‘2 et

@ D q O ‘HPCC« stee '/Z ,{
,’ 5 G lobaf g, ¥

& @ L

HDFB/ LTLVar)/ X

(G_u (A"Jecl Dd\"a g+"b\c+l/\y¢s
* ~ Malex

Concurrency Control - Under Way

r As-pqo ‘2
fr\J/ ‘J/ lr/' \l/ / _—‘k \ R‘Q_Q}'{Vo\b\v‘ ke(“"S‘/‘tfe
[Readirs Writer ?f/’?*?«;/ ekifw»,‘%b Cock
@ s X APL Lock" c
D] q, D ! | u"j““e/.gi Doffq
i a i S.'L’Ltc‘{‘urp
D R .
C [_'\PCaursrtep
¢ 7 O D q HC\“{QIO ('/20\7[(?}(
& d D ol Logle
s
L_ﬁl\ HDFb,LcLVow)/ X

(G(u ul/clecl Dd\'(a §+'uc+uy4s

* Mcﬁ{ex

Concurrency Control - Almost Done

r A—W |
F\JI/ v L vV i ~ gee}'/vom“ﬁ Ve curs/ e
13“"‘ rS | W""fe*j(f/ 2o ebi/w»f"/o., (o k
@ B} [S(AP L\ock” ¢
8] G:/ m D Lo J’—s | — u"ljuuve/.gl Do\‘fq
N) D E(e @ S+rqc+u’95
- Er ¢ ~— RP Carste
D o , o
o = D (, CT(OLO\([\V(Q{?Y
a 3 AN Lgl; OCI(
HDFS [hery |

(C(u c,wc/ecl Dd\‘a §+mff‘u reg
* ~ Mulex

Concurrency Control - Done!

7 1

o o l
T L v

L

@) RN
Y| W
o | ¥ &
N ® 0 |
D 0
m B o ¥

o @ By
\'—/ HDFB/ L.clm'ar)/l_“

(G(uu"c/et[Dd\'(a g‘/‘rt,\c'hA res
¢~ Mol ox

Testing for correctness and robust function

e Create a standalone test that

o Opens and closes multiple datasets concurrently
m Which will always serialize because of the global lock but exercises breadth
o More frequently
m Issue multiple, concurrent read requests to all open datasets
e Which are expected to proceed mostly concurrently
e With validations for proper operation and function

e Compiling this test against
o An unmodified HDF5 library allows a baseline performance metric
o Alibrary with concurrency modifications provides
m Correctness and robustness testing
m A performance metric
e (Can be used to demonstrate efficacy by comparing with the baseline, above
e When standalone test demonstrates correct operation
o Add concurrency test(s) to HDF5 regression test suite

Paving the way for Community Contributions

e Plan to modify the dataset read, open, and close paths, and the internal ID

manager code
o Leaving the rest for other contributors or as follow-on activities
o Most work is local in scope, restricted to compartments
m Except the interfacing macros and changes to the dataset memory structure

e Low-hanging fruit for someone else:
o MT-Safe memory allocation would be a significant contribution
m All threads serialize here, including this work as it will guard when using a global lock
m Making these routines MT-safe requires only internal, thus opaque, changes
m Needed changes are independent of this work, and vice versa
o Certainly other opportunities!

e Longterm

o The initial project have provided infrastructure changes
o Others can leverage the strategy/approach and those changes, too, in other code paths

Conclusion

e Strategy for conversion of HDF5 library to full multi-threaded concurrency

o Technically sound
o Incrementally achievable
o Testable

e Production-quality code contribution
o Reduce technical debt
o In new code, and in existing code, through the extensive code review required
o Implement necessary reusable infrastructure
o Satisfy current application needs
o Serve as example for others
e Opening for community contributions
o Want community to bring more incremental improvements, for a greatly desired capability

e Opportunity for HDF5, in general

o Opens HDF5 to more use-cases / industries / fields

Questions / Feedback / Discussion?

Locking / Concurrency Details

Library Re-entrancy Now

Library Re-entrancy During Conversion

Write-Write

rg
e
Gl
a
(5]
Q]

Read-Write

Read-Read

HDFG Librar

Are all of these locks required?

[N ap T

ReenTrant e curs o

1L&Qm4eri K} Writen ; Rq‘;‘,c/chifwff"/o,, Lo k
£ S AP LDC/('(' -
g) Gj g D Q tj P / U Jsp;arvqe/ V) J DO(.-fc‘
D ‘ 0@ Q 0 2 c L‘,PS
:])
@ o 9 ‘Heccwg-cye M ~f
,’ 0 G lobaf g, ¥
g b
HDFB/ LTLVar)/ X

(G_u (A"Jecl Dd\"a g+"b\c+l/\y¢s
* ~ Malex

Avoiding Deadlocks

Recoesce I
D Fad
‘EQPQJMVCE\

V

Coding Details

How to Make H5Dread MT-Safe

e Constraints:

o Contiguous dataset layout
o Atomic (fixed-length) datatypes
o No datatype conversions
o No data transforms
m H5Pdata_transform

o Serial I/O
m sec2 (POSIX) VFD
e Supports:

o H5Dread operations to same or different datasets
o Error handling

MT-Safe Infrastructure/Support

e |Infrastructure needed:
o New portable locks: reentrant recursive readers/writer lock, readers/writer lock, mutex
m Regular readers/writer lock and mutex not required to be recursive
o New implementations of HDF5’s internal macros:
m “Private” FUNC_ENTER/LEAVE macros that acquire the global lock, for internal routines
m ERROR handling macros that acquire the global lock
e Or acquire it in the routines they invoke
m API TRACE macros that acquire the global lock
e Or acquire it in the routines they invoke
m “Public’ FUNC_ENTER/LEAVE macros that acquire reader or writer API Lock, for public
API routines
o Analyze definition of FUNC_ENTER/LEAVE macros that don’t acquire the global lock for internal

routines
m Use new private, global lock-acquisition FUNC_ENTER/LEAVE macros in those routines

H5Dread Implementation (For Reference)

herr t H5Dread(hid_t dset_id, hid t mem type id, hid t mem space_id, hid t file space id, hid t dxpl_id, void *buf/*out*/)
{

H5VL_object_t *vol_obj = NULL;

herr t ret value = SUCCEED; /* Return value */

FUNC_ENTER_API (FAIL)
H5TRACEG ("e", "iiiiix", dset_id, mem_type_id, mem_space_id, file_space_id, dxpl_id, buf);

/* Check arguments */
if (mem_space_id < 0)

HGOTO_ERROR (HS5E_ARGS, HSE_BADVALUE, FAIL, "invalid memory dataspace ID"
if (file space id < 0)

HGOTE_ERROE(H5E_ARGS, HS5E_BADVALUE, FAIL, "invalid file dataspace ID"

/* Get dataset pointer */
if (NULL == (vol_obj = (H5VL_object_t *)HS5I_object verify(dset_id, H5I_DATAS
HGOTO_ERROR (H5E_ARGS, HS5E_BADTYPE, FAIL, "dset_id is not a dataset ID")

/* Get the default dataset transfer property list if the user didn't provide
if (H5P DEFAULT == dxpl id)
dxpl id = H5P DATASET XFER DEFAULT;
else - - - -
if (TRUE != HS5P isa class(dxpl id, H5P DATASET XFER))
HGOTO_ERROR (HSE_ARGS, HSE_BADTYPE, FAIL, "not xfer parms")

/* Read the data */
if ((ret_value = H5VL_dataset_read(vol_obj, mem type id, mem_ space_id, file_
HGOTO_ERROR (HS5E_DATASET, HSE_READERROR, FAIL, "can't read data")

done:
FUNC_LEAVE_API (ret_value)
} /* end H5Dread() */

How to Make H5Dread MT-Safe

e Fundamental Step: Make H5Dread entry-point thread-safe

o Modifications to H5Dread
m Use new global lock-acquisition TRACE macro
m Use new global lock-acquisition ERROR macros
m Use new reader API Lock-acquisition public FUNC ENTER/LEAVE macros
o For each “side call”: H5l_object_verify, H5P_isa_class
m Use new global lock-acquisition private FUNC_ENTER/LEAVE macro
o For “main call”: H5VL dataset_read
Leave with non-lock-acquisition private FUNC_ENTER/LEAVE macros
Use new global lock-acquisition ERROR macros
Use new global lock-acquisition private FUNC _ENTER/LEAVE macro in each “side call”
Repeat these “main call” steps as the call chain continues down internal routines, until the
pread() call in the sec2 (POSIX) VFD is reached:
e Hb5VL_ dataset read => H5VL native dataset read => H5D read =>
H5D__ contig_read => H5D__ select read => H5D __ select_io => ... => pread()

How to Make H5Dread MT-Safe

e Advanced Steps: Make a “side call” thread-safe

o [[[Describe how to make HS5I_object_verify thread-safe and concurrent]]]
o [[[ID manager discussed here?]]]

Dataset Memory Object Modifications

e Object acquisition/use as serialization point
o Removes need for long-lived critical sections of code
o Allows management of multiple, conflicting atomic changes to object
o Implement; Add reference count to track liveness
Implement; Add ISLOCKED flag to manage exclusive use
e Reference() and release(); Atomically {in,de}crease the reference count
o When reference count goes to zero => destroy (AKA “kill”) the record

e Lock() and unlock(); Atomically wait then set and unset the ISLOCKED flag
Get() and put(); ref + lock and unlock + release
e Modify Lookup(by ID); Create or return object given an ID

o Object is returned referenced and locked
o If caller did not want that, just drop the offending portion with unlock or release
m Or, pass a flag indicating whether caller wants the lock as this would be the usual, but
not normal, case

O

But the close routine can’t!

e Destruction no longer explicit, must be able to defer it

e Solution; Zombies!
o Implement; Add ISZOMB flag to dataset record/handle
o ID manager must be careful to block attempts by caller to reopen until the associated
record/handle has been killed
e Gone(); Remove/Stall association, then put() + set ISZOMB flag
o Refactor close routine into a call to gone
o Moving the real destruction into a “kill” routine, used by the release routine
e Other threads can continue normally

o Until they drop their last reference, of course
o Though they might need to exercise care when reacquiring locks

