
Concurrent HDF5:
A Community Contribution

Proposal
Explore HDF5 MT-Safe Read

Quincey Koziol, LBNL
koziol@lbl.gov

November 13, 2020

mailto:koziol@lbl.gov

Team Members and Contributors
● SNL: Lee Ward, Greg Sjaardema
● LBNL: Suren Byna, Houjun Tang, Tony Li
● The HDF Group: Chris Hogan, John Mainzer, Elena Pourmal
● LLNL: Mark Miller
● LANL: Brad Settlemyer
● Northwestern University: Kai-yuan Hou

Why Concurrent Multi-Threaded Access Now?
● New technology drivers multi-threaded

○ AI / ML packages like TensorFlow, PyTorch, etc
● CPU speed no longer the dominant form of improvements

○ Lots of cores on a chip, with newer big.LITTLE arrangements that can
move I/O-bound code to slower, lower-power cores

● On-node / near-node memory & storage technologies incoming
○ Benefit from low-priority “data mover” threads that need multi-threading in

HDF5
● Cloud storage here

○ Also benefits from low-priority “data mover” threads

Project Purpose and Expectations
● Purpose: Make HDF5 safe for concurrent access with multiple threads
● Expectations

● Timely inclusion of the necessary changes within the production library
● With comfort to all parties -- as in, risk minimized or significantly mitigated and that the

changes contribute significantly in terms of performance and maintainability while
minimizing additional technical debt

● General buy-in:
● That the strategy and approach is correct, and acceptable in the main

● A critical technical review
● Adapting and evolving the strategy and approach to the point where it can be implemented

● This is a living document
● Negotiate what/how to do this so that all are comfortable and believe the purpose will be

achieved, as discussed above

You must engage and offer feedback!

Agenda
● Propose exploration of a concurrent, thread-safe H5Dread routine

● Discuss technical strategy
● But, this is a lengthy presentation so deep technical thoughts are best left to an offline forum

● Want those thoughts, just not as the presentation is given
● Describe tests for correctness and robustness

● Based on that technical strategy

● Discuss the opportunity for contributions to the effort by the HDF5 Community

Goals for Concurrent Multi-Threaded Access
● Long-Term

○ Allow fully concurrent execution of all HDF5 API routines, from multiple threads
● Immediate

○ Make a single HDF5 API routine threadsafe and concurrent when performing its primary
function, possibly under limited circumstances:

■ Allow fully concurrent execution of H5Dread from multiple threads, all the way
down to pread() in the sec2 (POSIX) VFD

○ Allow fully concurrent execution of multiple HDF5 API routines, down to a logically
appropriate level:

■ Allow concurrent execution of all VOL operations, down to the callback to the VOL
connector

Goals for Concurrent Multi-Threaded Access
● Long-Term

○ Allow fully concurrent execution of all HDF5 API routines, from multiple threads
● Immediate

○ Make a single HDF5 API routine threadsafe and concurrent when performing its primary
function, possibly under limited circumstances:

■ Allow fully concurrent execution of H5Dread from multiple threads, all the way
down to pread() in the sec2 (POSIX) VFD

○ Allow fully concurrent execution of multiple HDF5 API routines, down to a logically
appropriate level:

■ Allow concurrent execution of all VOL operations, down to the callback to the VOL
connector

MT-Safe H5Dread
● Constraints:

○ Contiguous dataset layout
○ Chunked, virtual, etc. in later extensions

○ Atomic (fixed-length) datatypes
○ No datatype conversions
○ No data transforms (i.e. H5Pdata_transform)
○ Serial I/O

○ sec2 (POSIX) VFD
● Support:

○ H5Dread operations to same or different datasets
○ Error handling

Initial H5Dread Experiment
● Plan: Allow multiple threads to concurrently execute H5Dread operation

○ Remove the global API lock from H5Dread and reduce the lock granularity, while still
protecting shared data.

● Assumptions and Constraints
○ No errors are encountered.
○ All library initialization is complete before any thread calls H5Dread.
○ No threads are doing anything except calling H5Dread.
○ Library’s internal memory free lists are disabled.
○ "NDEBUG” is defined to disable asserts and other error checking.

● Test Program
○ Main thread opens an HDF5 file (8 64MiB datasets) and initializes the library.
○ Worker threads each read one dataset.
○ Workers join the main thread, which then closes the file and exits.

Results on Cori @ NERSC with Lustre
● With Global API Lock

● Without Global API Lock

Current Concurrency Control in HDF5

Future Concurrency Control in HDF5

Concurrency Control - Now

Concurrency Control - Step 1

Concurrency Control - Step 1(a)

Concurrency Control - Step 2

Concurrency Control - Under Way

Concurrency Control - Almost Done

Concurrency Control - Done!

Testing for correctness and robust function
● Create a standalone test that

○ Opens and closes multiple datasets concurrently
■ Which will always serialize because of the global lock but exercises breadth

○ More frequently
■ Issue multiple, concurrent read requests to all open datasets

● Which are expected to proceed mostly concurrently
● With validations for proper operation and function

● Compiling this test against
○ An unmodified HDF5 library allows a baseline performance metric
○ A library with concurrency modifications provides

■ Correctness and robustness testing
■ A performance metric

● Can be used to demonstrate efficacy by comparing with the baseline, above
● When standalone test demonstrates correct operation

○ Add concurrency test(s) to HDF5 regression test suite

Paving the way for Community Contributions
● Plan to modify the dataset read, open, and close paths, and the internal ID

manager code
○ Leaving the rest for other contributors or as follow-on activities
○ Most work is local in scope, restricted to compartments

■ Except the interfacing macros and changes to the dataset memory structure

● Low-hanging fruit for someone else:
○ MT-Safe memory allocation would be a significant contribution

■ All threads serialize here, including this work as it will guard when using a global lock
■ Making these routines MT-safe requires only internal, thus opaque, changes
■ Needed changes are independent of this work, and vice versa

○ Certainly other opportunities!
● Long term

○ The initial project have provided infrastructure changes
○ Others can leverage the strategy/approach and those changes, too, in other code paths

Conclusion
● Strategy for conversion of HDF5 library to full multi-threaded concurrency

○ Technically sound
○ Incrementally achievable
○ Testable

● Production-quality code contribution
○ Reduce technical debt

○ In new code, and in existing code, through the extensive code review required
○ Implement necessary reusable infrastructure
○ Satisfy current application needs
○ Serve as example for others

● Opening for community contributions
○ Want community to bring more incremental improvements, for a greatly desired capability

● Opportunity for HDF5, in general
○ Opens HDF5 to more use-cases / industries / fields

Questions / Feedback / Discussion?

Locking / Concurrency Details

Library Re-entrancy Now

Library Re-entrancy During Conversion

Read-Read
Read-Write

Write-Write

Write-Read

Are all of these locks required?

Avoiding Deadlocks

Coding Details

How to Make H5Dread MT-Safe
● Constraints:

○ Contiguous dataset layout
○ Atomic (fixed-length) datatypes
○ No datatype conversions
○ No data transforms

■ H5Pdata_transform
○ Serial I/O

■ sec2 (POSIX) VFD
● Supports:

○ H5Dread operations to same or different datasets
○ Error handling

MT-Safe Infrastructure/Support
● Infrastructure needed:

○ New portable locks: reentrant recursive readers/writer lock, readers/writer lock, mutex
■ Regular readers/writer lock and mutex not required to be recursive

○ New implementations of HDF5’s internal macros:
■ “Private” FUNC_ENTER/LEAVE macros that acquire the global lock, for internal routines
■ ERROR handling macros that acquire the global lock

● Or acquire it in the routines they invoke
■ API TRACE macros that acquire the global lock

● Or acquire it in the routines they invoke
■ “Public” FUNC_ENTER/LEAVE macros that acquire reader or writer API Lock, for public

API routines
○ Analyze definition of FUNC_ENTER/LEAVE macros that don’t acquire the global lock for internal

routines
■ Use new private, global lock-acquisition FUNC_ENTER/LEAVE macros in those routines

H5Dread Implementation (For Reference)
herr_t H5Dread(hid_t dset_id, hid_t mem_type_id, hid_t mem_space_id, hid_t file_space_id, hid_t dxpl_id, void *buf/*out*/)

{
H5VL_object_t *vol_obj = NULL;

herr_t ret_value = SUCCEED; /* Return value */

FUNC_ENTER_API(FAIL)
H5TRACE6("e", "iiiiix", dset_id, mem_type_id, mem_space_id, file_space_id, dxpl_id, buf);

/* Check arguments */

if (mem_space_id < 0)
HGOTO_ERROR(H5E_ARGS, H5E_BADVALUE, FAIL, "invalid memory dataspace ID")

if (file_space_id < 0)
HGOTO_ERROR(H5E_ARGS, H5E_BADVALUE, FAIL, "invalid file dataspace ID")

/* Get dataset pointer */

if (NULL == (vol_obj = (H5VL_object_t *)H5I_object_verify(dset_id, H5I_DATAS
HGOTO_ERROR(H5E_ARGS, H5E_BADTYPE, FAIL, "dset_id is not a dataset ID")

/* Get the default dataset transfer property list if the user didn't provide

if (H5P_DEFAULT == dxpl_id)

dxpl_id = H5P_DATASET_XFER_DEFAULT;
else

if (TRUE != H5P_isa_class(dxpl_id, H5P_DATASET_XFER))
HGOTO_ERROR(H5E_ARGS, H5E_BADTYPE, FAIL, "not xfer parms")

/* Read the data */

if ((ret_value = H5VL_dataset_read(vol_obj, mem_type_id, mem_space_id, file_
HGOTO_ERROR(H5E_DATASET, H5E_READERROR, FAIL, "can't read data")

done:
FUNC_LEAVE_API(ret_value)

} /* end H5Dread() */

How to Make H5Dread MT-Safe
● Fundamental Step: Make H5Dread entry-point thread-safe

○ Modifications to H5Dread
■ Use new global lock-acquisition TRACE macro
■ Use new global lock-acquisition ERROR macros
■ Use new reader API Lock-acquisition public FUNC_ENTER/LEAVE macros

○ For each “side call”: H5I_object_verify, H5P_isa_class
■ Use new global lock-acquisition private FUNC_ENTER/LEAVE macro

○ For “main call”: H5VL_dataset_read
■ Leave with non-lock-acquisition private FUNC_ENTER/LEAVE macros
■ Use new global lock-acquisition ERROR macros
■ Use new global lock-acquisition private FUNC_ENTER/LEAVE macro in each “side call”
■ Repeat these “main call” steps as the call chain continues down internal routines, until the

pread() call in the sec2 (POSIX) VFD is reached:
● H5VL__dataset_read => H5VL_native_dataset_read => H5D__read =>

H5D__contig_read => H5D__select_read => H5D__select_io => … => pread()

How to Make H5Dread MT-Safe
● Advanced Steps: Make a “side call” thread-safe

○ [[[Describe how to make H5I_object_verify thread-safe and concurrent]]]
○ [[[ID manager discussed here?]]]

Dataset Memory Object Modifications
● Object acquisition/use as serialization point

○ Removes need for long-lived critical sections of code
○ Allows management of multiple, conflicting atomic changes to object
○ Implement; Add reference count to track liveness
○ Implement; Add ISLOCKED flag to manage exclusive use

● Reference() and release(); Atomically {in,de}crease the reference count
○ When reference count goes to zero => destroy (AKA “kill”) the record

● Lock() and unlock(); Atomically wait then set and unset the ISLOCKED flag
● Get() and put(); ref + lock and unlock + release
● Modify Lookup(by ID); Create or return object given an ID

○ Object is returned referenced and locked
○ If caller did not want that, just drop the offending portion with unlock or release

■ Or, pass a flag indicating whether caller wants the lock as this would be the usual, but
not normal, case

But the close routine can’t!
● Destruction no longer explicit, must be able to defer it
● Solution; Zombies!

○ Implement; Add ISZOMB flag to dataset record/handle
○ ID manager must be careful to block attempts by caller to reopen until the associated

record/handle has been killed

● Gone(); Remove/Stall association, then put() + set ISZOMB flag
○ Refactor close routine into a call to gone
○ Moving the real destruction into a “kill” routine, used by the release routine

● Other threads can continue normally
○ Until they drop their last reference, of course
○ Though they might need to exercise care when reacquiring locks

