
www.anl.gov

Caching VOL
Efficient parallel I/O through caching
data on node-local storage

Huihuo Zheng (ANL), Venkatram Vishwanath (ANL), Quincey Koziol (LBL),
Houjun Tang (LBL), Suren Byna (LBL), Tonglin Li (LBL)
10/15/2020

huihuo.zheng@anl.gov

https://bitbucket.hdfgroup.org/scm/hdf5vol/cache.git

Argonne Leadership Computing Facility2

Integrating node-local storage into parallel I/O workflow
Node-local storage
• Local to the compute node, does not

need to go through the network
• Larger aggregate bandwidth

compared to the parallel file systems
Theta (w) – Lustre: 200 GB/s, SSD: 3TB/s
Summit (w) – GPFS: 2.5 TB/s, NVMe: 9.7 TB/s

Challenges
• Distributed
• Accessible only during job running
Typical usage
• Temporal storing data of the compute

node
Node-local storage (SSD, NVMe, etc)

Remote storage

Out goal: using node-local storage
for caching / staging data to improve
the parallel I/O

Typical HPC storage hierarchy: node-local storage (NLS) +
global parallel file system (PFS)

Theta @ ALCF: Lustre + SSD (128 GB / node),
ThetaGPU (DGX-3) @ ALCF: NVMe (15.4 TB / node)
Summit @ OLCF: GPFS + NVMe (1.6 TB / node)

Argonne Leadership Computing Facility3

How to use the caching VOL

export HDF5_PLUGIN_PATH=$HDF5_ROOT/../vol/lib
export HDF5_VOL_CONNECTOR="cache_ext under_vol=0;under_info={};"
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HDF5_PLUGIN_PATH

1) Inserting compute work between write/read and close.

3) Enabling caching VOL
Opt. 1 Through global environmental variable

H5Dopen()
H5Dread()
…# compute
H5Dclose()

H5Dcreate()
H5Dwrite()
… # compute
H5Dclose()

export HDF5_CACHE_RD=yes
export
HDF5_LOCAL_STORAGE_PATH=/local/scratch
export HDF5_LOCAL_STORAGE_TYPE=SSD

2) Setting VOL path

Opt. 2 Through explicit APIs
H5Pset_fapl_plist(’HDF5_CACHE_RD’, true)
…
H5Fcreate_cache()
H5Dcreate_cache()

Compatible with h5py 2.10.0

Repository: https://bitbucket.hdfgroup.org/scm/hdf5vol/cache.git

MPI_Init_thread(…, MPI_THREAD_MULTIPLE…)

Same public HDF5 API

Argonne Leadership Computing Facility4

Cache VOL Design Details

Argonne Leadership Computing Facility5

Parallel Write

Parallel file system

Shared HDF5 file

Compute node RAM

Node-local storage

1. Buffer is synchronously
copied to memory mapped files
on the node-local storage using
POSIX I/O.

2. Move data from memory
mapped file to the parallel file
system asynchronously using
background thread with HDF5
dataset write function (not
sacrificing extra memory)

H5Dwrite()

3. Wait for all the tasks to finish
in H5Dclose() / H5Fclose()

Compute RAM->NLS Compute

I/O: NLS->PFSPartial overlap of compute with I/O

Compute I/O (RAMàPFS) Computew/o caching

w/ caching

Details are hidden from the application developers.

Argonne Leadership Computing Facility6

Parallel Read

Parallel file system

Single shared HDF5 file

Compute
node RAM

MPI_Win

MPI_Put

1. Create memory mapped files
and attached them to a MPI_Win
for one-sided remote access

2. Read data from the parallel file
system using HDF5 native
dataset_read function

3. Cache the data with MPI_Put
asynchronously (using
background thread)

Node-local
storage

First iteration: on-the-fly prefetching data

H5Dread() / H5Dread_to_cache / H5Dprefetch

One-sided communication
• Each process exposes a part of its memory to

other processes (MPI Window)
• Other processes can directly read from or write

to this memory, without requiring that the
remote process synchronize (MPI_Put, MPI_Get)

Argonne Leadership Computing Facility7

Parallel Read

Compute
node RAM

MPI_Win

MPI_Get Read data from the memory
mapped files on the node-local
storage with MPI_Get

Node-local
storage

H5Dread() / H5Dread_from_cache()

Reading data to the node-local storage

Compute RAM<-NLS Compute

Compute RAM<-PFS Computew/o Caching

w/ Caching

Argonne Leadership Computing Facility8

Storage management: cache replacement policy

H5LSclaim_space

F1.h5
F2.h5

F1.h5-cache F2.h5-cache

H5LSclaim_space

F3.h5

H5LScla
im_space

?

• Each file claims a certain space
on the node-local storage. If
successful, a folder is created to
contain the cached data.

• If the space is full, free up space
for the new file based on certain
cache replacement policy (LRU,
FIFO, LFU). If not able to free up
enough space, no caching will be
turned on for that file.

• Cache is removed at H5Dclose /
H5Fclose

Argonne Leadership Computing Facility9

Initial Performance Evaluation

Argonne Leadership Computing Facility10

Initial performance evaluation – parallel write

Parallel write performance: each process writes 16MB of data to a shared HDF5 file. The type
of node-local storage is either SSD/NVMe or RAM. With caching, the write bandwidth scale
linearly with a larger aggregate bandwidth surpassing the Lustre / GPFS write bandwidth.

Theta @ ALCF Summit @ OLCF

Argonne Leadership Computing Facility11

Initial performance evaluation – parallel read

Parallel read performance. The bandwidth is averaged over four iterations. At each
step, the application reads a random batch (32) of samples (224x224x3) with shuffling.
The application reads through the entire dataset in one iteration.

Summit @ OLCF
(GPFS + NVMe)
16 ppn

Theta @ ALCF
(Lustre + SSDs)
16 ppn

Argonne Leadership Computing Facility12

Conclusion

• Node-local storage caching / staging improves the scalability and
achieves higher aggregate bandwidth over direct I/O to parallel file
system.

• VOL implementation makes it easy to integrate into existing HPC
applications and python workloads with minimal code change.

Future works
• Integrating with other ExaIO / ExaHDF5 developments, such as

Async VOL (stacking), Subfiling VFD, Topology aware VFD.

Git Repo: https://bitbucket.hdfgroup.org/scm/hdf5vol/cache.git
huihuo.zheng@anl.gov

https://bitbucket.hdfgroup.org/scm/hdf5vol/cache.git

Argonne Leadership Computing Facility13

Acknowledgment

• This work was supported by the U.S. Department of Energy, Office of
Science, Office of Advanced Scientific Computing Research, under
contract number DE-AC02-05CH11231 (Project: Exascale Computing
Project [ECP] - ExaHDF5 project).

• This research used resources of the Argonne Leadership Computing
Facility, which is a DOE Office of Science User Facility supported under
Contract DE-AC02- 06CH11357.

• This research used resources of the Oak Ridge Leadership Computing
Facility, which is a DOE Office of Science User Facility supported under
Contract DE-AC05-00OR22725.

