
SlideRule

APIs

Data Algorithms

The Use of HSDS on SlideRule
HDF User’s Group Meeting

JP Swinski/NASA/GSFC

October 13 - 16, 2020

SlideRule

APIs

Data Algorithms

Agenda

I. SlideRule Project Background

II. Why We Chose HSDS

III.Suggestions For Future HSDS Development

SlideRule

APIs

Data Algorithms

SlideRule Project Objectives

Project Objective: Promote new scientific discovery by lowering the barrier of entry to using the ICESat-2 data.

Tie-In to NASA’s Mission: To make NASA datasets which are publicly available, practically accessible.

Problem Statement: The amount of data produced by ICESat-2 and the computational resources required by the
algorithms that process the data, creates an often insurmountable barrier of entry to using the lower-level ICESat-2 data
products. As a result, the typical use of ICESat-2 data is constrained to the pre-launch predicted science applications for
which higher-level data products are generated.

Proposed Solution: Develop and deploy a publicly accessible ICESat-2 science data service that provides science data
products generated on-demand using parameters supplied by researchers at the time of the request.

Key Benefits:
• There is a one-to-one mapping between resources spent producing data products and which data products are being

used by the community.
• Unforeseen science applications are supported, with no additional cost, by the same system that supports the primary

science objectives of the mission.
• The service-based architecture promotes integration with other agencies and organizations to improve the products

and services they provide.
• Improvements to the algorithms that process the lower-level science data are immediately made available to the user

communities (there is no longer a need to reprocess hundreds of terabytes of data, host the new version, and require
users to re-download the data when a change is made in the processing algorithms).

SlideRule

APIs

Data Algorithms

SlideRule Project Overview

• SlideRule is a server-side framework implemented in C++/Lua that provides REST APIs for
processing science data and returning results.

• SlideRule communicates with a back-end data service implemented in HSDS with data stored
in AWS S3.

• The initial target application for SlideRule is processing the lower-level ICESat-2 point-cloud
and atmospheric datasets for seasonal snow depth mapping and glacier research.

SlideRule

APIs

Data Algorithms

ICESat-2 Background Information

Mission
• Ice, Cloud, and land Elevation Satellite (ICESat-2) launched on September 15, 2018, with a three-year minimal mission life
• The Advanced Topographical Laser Altimetry System (ATLAS) is the sole instrument; it fires a laser towards earth 10,000 times

a second and measures the amount of time it takes individual photons to reflect of the earth’s surface and return back to the
spacecraft.

• The individual photon time measurements are used to calculate surface elevations to a cm-level resolution.

Data
• ICESat-2 produces about 150 TB/year of low-level data.
• At 100Mbps egress, it would take 4.5 months to retrieve one year of data.
• Continuous aggregated egress rate varies depending on the network infrastructure. Over Internet2, rates as high as

400Mbps can be achieved, which still puts the time needed to retrieve the data at about five weeks.

Algorithms
• ICESat-2 has two low-level data products – one used to study surface elevations, and one used to study atmospheric layers
• NASA provides seven Level-3A ICESat-2 data products covering a range of anticipated science applications
• NASA provides nine Level-3B ICESat-2 data products that target more specific science applications

SlideRule

APIs

Data Algorithms

Why We Chose HSDS

SlideRule

APIs

Data Algorithms

Solution #1

Move everything to the cloud and run it just like you would locally.

Drawback: It is higher cost for the same performance.

(1) Running cost effective cloud solutions require a different system architecture than what
has been typically used for on premise compute and storage services

e.g. EFS storage of 150TB is ~$45K/month

(2) Typical data access patterns that are efficient for local file access, are not efficient when
using object stores like S3.

e.g. when accessing a 2GB h5 file from a local disk, you pay an insignificant I/O penalty for data
you don't read. But when using S3, it is not trivial to read just the data you need. You either pay
for it in per-request latency overhead with multiple accesses to S3 to scan and traverse the file;

or you pay for it all at once if you download the whole file to just read a little bit of it.

SlideRule

APIs

Data Algorithms

Solution #2

Transform the data into a cloud-optimized format.

Drawback: The ICESat-2 project has heavily invested in HDF5
based tooling, and the existing data pipelines took years to develop.

If we want to collaborate with and leverage off of the work other
groups have done who have used the ICESat-2 datasets, then we
must minimized the effort needed to adapt their tooling to our

system.

SlideRule

APIs

Data Algorithms

Solution #3

Run HSDS which maintains optimized indexes into the h5 files
stored in S3 so that you can efficiently read only what you want.

Benefit: Existing tools can either be used as is or with minimal
updates while still leveraging the benefits of a cloud-optimized

architecture.

SlideRule

APIs

Data Algorithms

Solution #4

Run HSDS alongside an on-demand data processing engine (SlideRule).

Benefit: Both cloud and client access.

(1) SlideRule provides a way to dynamically process the bulk of the data in the cloud
using HSDS as a back-end, so that scientists can focus on the algorithms specific to

their area of research.

(2) Power-users who have their own suite of lower-level algorithms can use the same
HSDS services as a front-end and access the data directly (via h5pyd).

(3) Institutions can co-locate their processing in AWS (us-west-2) and leverage the full
benefits of AWS infrastructure in processing the data.

SlideRule

APIs

Data Algorithms

Summary

HSDS allows the use of existing datasets and tooling.

• HDF5 is ideally suited for archiving and provides a rich mechanism for metadata.

• There is a tremendous amount of NASA data currently in the HDF5 format.

• There is an extensive amount of tooling implemented by NASA and by external organizations that work with and expect the HDF5 format.

• The h5pyd package and rest-vol connector hide the physical cloud-access of the data from the logical access implemented in the code.

HSDS provides cloud-optimized access to existing datasets.

• Storing massive datasets in the cloud, cost effectively, for long periods of time, currently means storing those datasets in object stores (e.g. S3).

• The way data is read from an object store has different performance implications than the way it is read from a file system.

• HSDS provides performant access to HDF5 data in object stores, while providing the same logical view of the data as if it was stored locally.

SlideRule

APIs

Data Algorithms

Suggestions For Future HSDS Development

SlideRule

APIs

Data Algorithms

HSDS Link Option Performance

Decouple link option performance from dataset chunking

• When using the native data ingest mode for HSDS, each dataset is re-chunked to an
optimal size for cloud access.

• The native data ingest mode requires the source dataset to be re-hosted and processed
through an ETL pipeline. We want to leverage existing datasets in the cloud hosted by

the institutions that own them.

• The link option ingest mode for HSDS allows the source data to remain where it is in S3,
and indexes to the datasets inside the h5 files to be built and maintained by HSDS.

The problem is that the chunk sizes present in the source datasets may not be optimal
for cloud access, and it turns out that chunk size matters.

SlideRule

APIs

Data Algorithms

HSDS Performance per Dataset

Performance is dominated
by the number of chunks
being read. This suggests
that the per-chunk
overhead drives
performance.

SlideRule

APIs

Data Algorithms

HSDS Performance per Data Format

Format Instance Type Data Nodes Http Compression Duration (seconds)

Local File c5.xlarge n/a Yes 10

Native Ingest c5.xlarge 4 Yes 60

Link Option c5.xlarge 4 Yes 990 to 1050

Link Option c5.xlarge 4 No 1150

Link Option c5.xlarge 8 Yes 990

Link Option c5.4xlarge 16 Yes 620

Link Option w/
continuous data

c5.xlarge 4 Yes 30

Notes:
1. A total of 718MB of data was read out of 72 different datasets inside a large (~2GB) h5 file.
2. The c5.xlarge instance has 4 cores, 8GB of RAM, and up to 10Gbps of network connectivity.
3. All test runs used only one service node.

SlideRule

APIs

Data Algorithms

When Using HDF5, Chunking Sometimes Matters

Chunking a dataset can make a difference when:

• The datasets cannot fit in memory – e.g. datasets that are larger than 8GB; individual chunks
can be loaded into memory and worked on, and then swapped out for the next chunk.

• The chunks can be identified a priori, and only the necessary chunks are read from the
dataset – e.g. bands of a multispectral image.

Chunking a dataset may not make a difference when:

• The entire dataset is always read – e.g. the lowest level of differentiation within an h5 file
turns out to be the dataset itself

• The chunks do not correlate to how the dataset is read by end-users – e.g. multiple chunks
need to be read in order to process the data; how many chunks need to be read before reading
the entire dataset becomes just as efficient?

On a local file system, the overhead associated with reading chunks is negligible, and so
creating smaller chunks improves latency with minimal cost to throughput.

SlideRule

APIs

Data Algorithms

When Using HSDS, Chunking Always Matters

On a distributed system (e.g. object store), the overhead associated with
reading chunks dominates the performance. Therefore both throughput and
latency can be drastically affected by the wrong chunk size.

• Too large and small requests pay the price of reading much more data than is
needed.

• Too small and large requests pay the price of expensive per-object S3 retrieval
overhead.

SlideRule

APIs

Data Algorithms

Continued Work

• Where are the bottlenecks?
• S3 object – with native, the chunks are spread out across many objects, but with link, all the chunks

ultimately point back to the same object which is stored at the same physical place in S3.
• HSDS server – which parameters maximize CPU use and memory such that the network interface is

saturated.
• Client – even if the data throughput is very high, if the client doesn’t need all of the data, then the effective

data rate can be drastically reduced (e.g. a large chunk size may return more data to the client than
needed such that to get the N bytes it wants, it has to receive x*N bytes).

• What does the performance curve look like across these different dimensions:
• Number of data nodes (per CPU core)
• Number of service nodes (per CPU core)
• Size of chunk
• Size of dataset
• Use of compression
• Cache hit vs. cache miss

• Is it possible to index source datasets using user supplied parameters. Instead of indexing a
source file based solely on the chunked objects, can chunks be intelligently combined by
HSDS when the underlying file structure supports it?

SlideRule

APIs

Data Algorithms

BACKUP

SlideRule

APIs

Data Algorithms

What is HSDS

SlideRule

APIs

Data Algorithms

HSDS Data Format

SlideRule uses HSDS to re-host the existing ICESat-2 datasets in a cloud-optimized
format without reformatting the data and without breaking any existing tooling.

What Is HSDS
HSDS is a web service that implements a
REST-based web interface for HDF5 data.
Data can be stored in either a POSIX files
system, or using object based storage
such as AWS S3, or Azure Blob Storage.
HSDS can be run on a single machine
using Docker or on a cluster using
Kubernetes (or AKS on Microsoft Azure)

SlideRule

APIs

Data Algorithms

Highly Scalable Data Service (HSDS)

(Existing)
HDF5 Code

HDF5
Files

(ATL03)

h5py libhdf5 h5pyd rest-vol

SlideRule

APIs

Data Algorithms

HSDS in S3

Each h5 file is an
object that points
to a sets of
chunked objects
in the same
bucket.

SlideRule

APIs

Data Algorithms

REST-VOL Additional Code

Creating this file access
property list and
associating it with the
rest-vol connector is
the only change to
existing C code needed
to work with HSDS

SlideRule

APIs

Data Algorithms

Recommendations

SlideRule

APIs

Data Algorithms

Bindings

Currently, Python is the only fully supported language for interfacing with
HSDS. The Python client is provided through the h5pyd Python package
developed and maintained by the HDF group.

The rest-vol connector is the only other client available for talking to
HSDS. It provides an excellent interface to HSDS and works well with
existing C/C++ applications, but is no longer actively being developed.

Ideally, future efforts to improve HSDS will include supported clients in
other languages like Java, Rust, etc. In addition, having the rest-vol
connector come back as an actively maintained project would reduce the
risk to existing efforts that have integrated with it.

SlideRule

APIs

Data Algorithms

Serverless

Currently, in order to access h5 files in S3 using the HSDS interface,
an HSDS server must be running.

Servers cost money and must be maintained.

Ideally, the Python client (h5pyd) or some other client would be
able to access the HSDS metadata directly (wherever they are
stored) and perform the efficient reads of the h5 files in S3 without
the need for an HSDS server running.

SlideRule

APIs

Data Algorithms

A Case for Cloud

SlideRule

APIs

Data Algorithms

Example Research Goal

Say you want to use ICESat-2 data to estimate the amount of snow
that fell in 2019 in order to verify an existing model you’ve built

using other data sources.

SlideRule

APIs

Data Algorithms

Problem #1

There is no higher-level data products provided by NASA that are
optimized for snow-depth recovery.

As a result, you've got to go to the ICESat-2 point-cloud and
atmospheric data (i.e. the ATL03 and ATL09 datasets).

SlideRule

APIs

Data Algorithms

Problem #2

One year of ATL03 and ATL09 data is about 150TB.

Assuming an egress of 80Mbps, if you start pulling the data today,
after 6 months of continuous, uninterrupted data transfer, you

should have the 2019 data on your local computer.

SlideRule

APIs

Data Algorithms

Problem #3

150TB doesn't fit on your local computer.

So now you go to your IT department (if you have one… if you are a
small organization, you’ll be doing this yourself), and ask for 150TB

of storage you can NFS mount. The IT group goes out and buys 5
new machines, each with 4x10TB WD spinners in a RAID 5

configuration, and puts them on a 10GbE network.

SlideRule

APIs

Data Algorithms

Problem #4

Even running on the fancy IT department servers, your Python
code can only process 10MB/s.

So now you google MPI or Dask, choose one, get up to speed, rewrite
more code than you expected, clean up a few choke points, and kick
things off. It still takes about 2 weeks to complete one run; so you

get some Python consulting help, do some further targeted
optimizations, and you get it down to 5 days.

SlideRule

APIs

Data Algorithms

Problem #5

You succeed.

It’s six months later and everything is now downloaded; your code
is ultra-optimized; and you've got a cluster at your disposal. Then

your colleague at an out-of-state university has a few ideas and
wants to collaborate.

How do you even begin to efficiently replicate and then build off of
what you've done. Three months later you become the service part
of “data-as-a-service” because everyone is asking you to run their

ideas on your system.

SlideRule

APIs

Data Algorithms

Problem #6

A new version of the data comes out.

