
Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

Enhancing the Performance and
Scalability of Third-Party Libraries
in the Sandia I/O Software Stack

Greg or y S j aa rdema , Eng ineer ing Sc i ences Cente r,
Sand ia Na t iona l Labora tor i e s, A lbuquerque NM

H D F 5 U s e r G r o u p M e e t i n g 2 0 2 0 , O c t o b e r 1 4 - 1 6 , 2 0 2 0

Unclassified, Unlimited Release. SAND2020-10955 C

Capacity

Scalability

Complexity

Exodus

Background
◦ Developed 1992
◦ Replaced old fortran-unformatted read/write files with a
◦ device-independent, random access database.

◦ Based on NetCDF

◦ Single format used by all SNL Structural and Thermal FE Codes
◦ Nodes, Homogenous Element Blocks, Node Sets, Side Sets

◦ Transient Data on Nodes and Elements.

◦ A Suite of mesh generation, preprocessing, postprocessing, visualization, and translation
tools developed to generate and modify exodus files. SEACAS

◦ Backward Compatibility Essential

Sjaardema: Sub-JOWOG-34, 2017 SAND2017-1050 C

Exodus Evolution

Capacity:
◦ 1992: CDF1 ~34 Million Nodes/Elements (~NetCDF-2.3.X)
◦ 2004: CDF2 ~500 Million Nodes/Elements (NetCDF-3.6.0)
◦ Internal changes to exodus format to reduce dataset sizes

◦ 2008: NetCDF-4 (HDF5 based) 2.1 Billion Nodes/Elements
◦ 2012: 64-bit Integer changes (HDF5 Enabled) Multi-Billion Nodes/Elements
◦ Converts integer size on the fly. Ids, indices, maps

Capability:
◦ Named blocks, sets, attributes, and maps
◦ Transient variables on all blocks and sets
◦ “unlimited” string size replaced fixed 32 character limit
◦ Full topology support (Element->Face->Edge->Node)
◦ Arbitrary Polyhedral element support
◦ Compression (via HDF5)
◦ File Groups (via HDF5)
◦ Assemblies, Entity Attributes, Discontinuous Galerkin

Sjaardema: Sub-JOWOG-34, 2017 SAND2017-1050 C

Exodus Evolution -- Parallel

Original workflow was file-per-processor
◦ External tools to split to parallel and join from parallel
◦ Extension library “nemesis” provided parallel data structures
◦ Each “processor” file is valid exodus file.

Exodus becomes “parallel-aware”
◦ Nemesis Embedded in Exodus (ne_? Changed to ex_?)
◦ PNetCDF and HDF5 provide parallel IO capabilities
◦ Can support auto-decomposition and auto-join

Sjaardema: Sub-JOWOG-34, 2017 SAND2017-1050 C

I/O Subsystem – IOSS Library

◦ Started as the IO component of the Sierra project – 12/1999
◦ Provide a database-independent interface to applications

◦ (Exodus, CGNS, SAF, XDMF, ADIOS2, …)
◦ Also functions as a “pseudo-C++ API” for the exodus library
◦ Supports Advanced HPC Capabilities:

◦ Kokkos Data
◦ Burst Buffer
◦ Data Warehouse (FAODEL)
◦ Embedded Visualization

◦ Auto-decomposition
◦ Replaces legacy file-per-processor mode
◦ Uses either HDF5 or PnetCDF for parallel input
◦ Uses decomposition methods in Zoltan and ParMETIS
◦ Supports Exodus and CGNS (Structured and Unstructured)

◦ Auto-join (single file output) option
◦ Uses HDF5 or PnetCDF for parallel output
◦ Scalability issues.... Being addressed.

◦ HDF5 is used by 3 of the supported Data types.

Parallel Scalability -- Exodus

1

10

100

1000

10000

100000

1000000

64 256 1,024 4,096 16,384 65,536 262,144

EX
EC

U
TI

O
N

 T
IM

E
(S

EC
O

N
D

S)

PROCESSOR COUNT

Execution - Old
Week

Day

Hour

Minute

2 Billion Elements
Sequoia
Lustre Filesystem

Large model being run on Sequoia
Application reported “analysis is hanging”

Ran same mesh in IOSS simulator with tracing
enabled to determine what was happening

Initial results looked promising…f

Parallel Scalability -- Exodus

1

10

100

1000

10000

100000

1000000

64 256 1,024 4,096 16,384 65,536 262,144

EX
EC

U
TI

O
N

 T
IM

E
(S

EC
O

N
D

S)

PROCESSOR COUNT

Execution - Old

Open - Old

Week

Day

Hour

Minute

2 Billion Elements
Sequoia
Lustre Filesystem

A supercomputer is a device for turning compute-bound problems into I/O-bound
problems

Parallel Scalability -- Exodus

1

10

100

1000

10000

100000

1000000

64 256 1,024 4,096 16,384 65,536 262,144

EX
EC

U
TI

O
N

 T
IM

E
(S

EC
O

N
D

S)

PROCESSOR COUNT

Execution - Old

Open - Old

Week

Day

Hour

Minute

◦ Added option to use new (at the time) HDF5
collective metadata option

◦ Additional performance improvements,
◦ parallel fixes,
◦ code cleanups

2 Billion Elements
Sequoia
Lustre Filesystem

A supercomputer is a device for turning compute-bound problems into I/O-bound
problems

Parallel Scalability -- Exodus

1

10

100

1000

10000

100000

1000000

64 256 1,024 4,096 16,384 65,536 262,144

EX
EC

U
TI

O
N

 T
IM

E
(S

EC
O

N
D

S)

PROCESSOR COUNT

Execution - New

Execution - Old

Open - Old

Open - New

◦ Added option to use new HDF5 collective metadata option
◦
◦ Additional performance improvements,
◦ parallel fixes,
◦ code cleanups

◦ Work closely with HDF5 and NetCDF developers
◦ Working with HDF5 –
◦ flush, truncate, open scalability issues

Week

Day

Hour

Minute

2 Billion Elements
Sequoia
Lustre Filesystem

A supercomputer is a device for turning compute-bound problems into I/O-bound
problems

Parallel Scalability – Exodus AutoJoin

Improving parallel scalability of auto-join (single file output)
◦ Patch NetCDF/HDF5 to avoid unneeded data access (PR 336)
◦ Code review of Ioss “autojoin” routines

Preliminary results look promising, more to do:
◦ Darshan Profiling
◦ MPI Profiling
◦ MPI-IO Tuning
◦ Filesystem Tuning

Working with HDF5 –
◦ Flush, truncate, close scalability issues

0.1

1

10

100

1000

10000
2 8 32 128 512 2048 8192 32768

Ex
ec

ut
io

n
Ti

m
e,

 s
ec

on
ds

Processor Count

Compose TimingFill - Redefine
Fill - Elapsed
NoFill - Redefine
NoFill - Elapsed

0

50

100

150

200

250

300

32 128 512

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Processor Count

134 Million Elements, rzuseq

Compose FPP

Input/Output performance improvements
CGNS Structured Mesh

0.001

0.01

0.1

1

10

100

1000

10000

100000

32 128 512 2,048 8,192 32,768

Ex
ec

ut
io

n
(s

ec
on

ds
)

MPI Ranks

Baseline

Add MetaData BCast

Improved N->1

File-per-Processor (fpp)

MPI_BCast()

Serial Reference

Minute

Hour

Day

Second

Input/Output performance improvements
CGNS Structured Mesh

0.001

0.01

0.1

1

10

100

1000

10000

100000

32 128 512 2,048 8,192 32,768

Ex
ec

ut
io

n
(s

ec
on

ds
)

MPI Ranks

Baseline

Add MetaData BCast

Improved N->1

File-per-Processor (fpp)

MPI_BCast()

Serial Reference

Minute

Hour

Day

Second

Compact Storage

0.1

1

10

100

1000

10000

100000

32 64 128 256 512 1024 2048 4096 8192 16384

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

MPI Ranks

Baseline

Improved N->1

Improved, Striped

File-per-Processor (fpp)

Serial Reference

Input/Output performance improvements – Large Model
CGNS Structured Mesh

0.1

1

10

100

1000

10000

100000

32 64 128 256 512 1024 2048 4096 8192 16384

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

MPI Ranks

Baseline

Improved N->1

Improved, Striped

File-per-Processor (fpp)

Serial Reference

Input/Output performance improvements – Large Model
CGNS Structured Mesh

Improvements:
• 2 to 3 orders of magnitude

• Hours to seconds…
• Competitive with FPP
• Additional speedups (stripe, …)

0.1

1

10

100

1000

10000

100000

32 64 128 256 512 1024 2048 4096 8192 16384

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

MPI Ranks

Baseline

Improved N->1

Improved, Striped

File-per-Processor (fpp)

Serial Reference

Input/Output performance improvements – Large Model
CGNS Structured Mesh

Improvements:
• 2 to 3 orders of magnitude

• Hours to seconds…
• Competitive with FPP
• Additional speedups (stripe, …)

Recipe for Success…
• Test on representative models
• Use simulator for faster trials
• Instrument/Trace/Profile
• Collaborate with TPL Developers
• Test hypotheses
• Retest
• Verify on different models
• Verify in actual application
• Productionize / Stabilize
• Repeat…

32 Exodus speedups…

1

10

100

1000

32 64 128 256 512 1024 2048 4096 8192 16384 32768

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

MPI Ranks

Baseline

Compact

FPP

Exodus format file in NetCDF-4 (HDF5) format
• 64-bit integers, 64-bit doubles
• 48.3 Gbyte file

• 390 Million finite element nodes
• 49 Million 27-node hexahedral elements
• 1 time step with 8 variables per node

Lustre Filesystem
• “nscratch” 11 PByte
• Input file stripe count = 1
• Output file stripe count = 36

Run on “serrano” CTS-1 system
• 2.1 GHz processors

• Dual sockets with 18 cores each
• Intel Broadwell® E5-2695 v4
• ~1.2 TFLOPs per node

• 128 GB RAM per node (3.55 GB per core)
• Intel Omni-Path high speed interconnect

33 Exodus speedups…

1

10

100

1000

32 64 128 256 512 1024 2048 4096 8192 16384 32768

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

MPI Ranks

Baseline

Compact

FPP

34 Exodus speedups…

1

10

100

1000

32 64 128 256 512 1024 2048 4096 8192 16384 32768

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

MPI Ranks

Baseline

Compact

FPP

Significant Speedup Realized
• NetCDF PR1570 (HDF5 Compact Storage).
• Merged, Released in 4.7.4.
• Uses existing API function
• Still slower than FPP by >2X; more profiling

needed

Cgns many zone optimization

Creating a cgns file with “many” zones
exposes N^2 behavior
◦ Metadata only being written
◦ Serial or Parallel

35

0

200

400

600

800

1,000

1,200

0 200,000 400,000 600,000 800,000 1,000,000

Ex
ec

ut
io

n
Ti

m
e

Th
ou

sa
nd

s

Zone Count

Execution Time for Zone Create Testing

Baseline

H5Literate_by_name Change

Remove strcmp cost

Profiling showed “H5Literate_by_name” major contributor
H5Literate_by_name changed to H5Lexists
Code calling this function no longer shows as a hot-spot

Still N^2 behavior in another part of code due to string
compares.

Looking at hashing strings to avoid this cost.

With both of these fixes, behavior is near-linear performance out
to a million zones.

Input by Scot Breitenfeld and Mickael Philit

Conclusions
Scalability, Complexity, and Capacity are very important to HPC Applications
◦ Measure performance in entire spectrum; verify performance
◦ Make sure to probe high end of range (large MPI ranks especially…)
◦ Timers / Diagnostics important to locate source of non-performant behavior
◦ Don’t guess – measure and verify.

The HDF5 library has helped Sandia I/O libraries remain performant
◦ Capacity:

◦ HDF5 eliminated 32-bit limit of NetCDF, Compression

◦ Complexity:
◦ HDF5 has removed several TPL limitations making it easier to store complex models
◦ Use of correct function is important (H5Lexists vs H5Literate_by_name)

◦ Scalability:
◦ Collective Metadata routines have reduced execution time by 2 to 3 orders of magnitude
◦ Compact Storage capability has shown similar reductions
◦ Burst Buffer support and other features (GPU, Threading, …) are under development and research
◦ Testing of the HDF5 library at scale is being done by THG

◦ Thanks to Scot Breitenfeld and Elena for THG support for much of this work.

36

