I REST VOL for HSDS and
HDF Sharded Data Storage

John Readey

el N

mYe
The HDF Group

Proprietary and Confidential. Copyright 2018, The HDF Group.




. Lt
Overview . O
The HDF Group

Sharded Data Storage
REST VOL

Direct Access



Sharded data concept o ©
The HDF Group

Instead of managing HDF5 objects (datasets, groups, chunks) within a POSIX file store

them as separate files (or as objects within an object storage system such as S3)

For meta data (datasets and groups), a self-descriptive format such as
JSON can be used

For chunks, store as binary objects for efficiency



Why a sharded data format? — O
The HDF Group

Limit maximum size of any object

. -> Object storage systems typically don’t support partial writes, so large objects
are inefficient to update
. Supporting parallelism is easier
- ->no file locking needed
No need to manage free space, key-value mappings, etc
. -> storage systems have gotten pretty good at doing this for you
No need to worry about system crash leaving you with a corrupted HDF5 files

.+ -> WOrse case you lose one object, with object storage not even that



. T
Case against sharded storage 1 ©
The HDF Group

Convenience of having one file vs lots of small files
Maybe not as important given tooling to abstract this from the user
E.g. hstouch, hscopy, hsrm tools
Filesystems have trouble dealing with large number of files (particularly within one
directory)
Not sure this is a problem with modern Linux filesystems

Certainly not an issue with object storage systems



HSDS shard schema example

B ¥
N L/1
The HDF Group

root_obj_id/ Observations:

Metadata is stored as JSON

Chunk data stored as binary blobs
Self-explanatory

One HDF5 file can translate to lots of
objects

Flat hierarchy — supports HDFS

group.json

objl id/
group.json o

obj2 id/
dataset.json
0 0 *
0 1

obj3 id/
dataset.json
0 0 2
0 0 3 o

multil

Can |i

NKiNg
mMit maximum size of an object

Can be used with Posix or object
storage

Schema is documented here:

hitps://github.com/HDFGroup/hsds/blob/master/docs/design/ob|_store_schema/obj_store_schema_v2.md



https://github.com/HDFGroup/hsds/blob/master/docs/design/obj_store_schema/obj_store_schema_v2.md

LIRJ=

Storage Partitioning B~
e roup

It can be useful to divvy up the objects within an HDF5 domain into roughly equal
size collections — for instance we have n workers and we’d like to perform some
action on the domain

CRUSH algorithm approach: hash key and take modulo of number of workers

Decentralized, no book keeping required




Conversion from HDFS5 files to sharded files Thrm':l'l)ﬁ; 8
e roup

The tool “hsload” will convert an HDF5 file to the sharded format (using HSDS)
Conversely, the “hsget” tool will take the shaded format and reconstruct the HDF5
file

Data is preserved after a round trip



HDFS5 file linking 1 ©

The HDF Group

Converting large HDF5 files (or a large collection of files) to the
sharded format is time consuming and effectively doubles the storage
requirements

Rather than converting the entire file to the HDF Schema, just the
metadata can be imported (typically <1% of the file)

The sharded format will store a map to the chunks in the original file
Dataset reads are converted to Range Gets on the stored file

It is also possible to construct a server file that aggregates multiple
stored files (similar to how the HDF5 library VDS feature works)



REST VOL Plugin ror ©

The HDF Group

- The HDF5 VOL architecture is a plugin layer for HDF5
- Public APl stays the same, but different back ends can be implemented
- REST VOL substitutes REST API requests for file i/o actions
- C/Fortran applications should be able to run with minor tweaks
- Downloadable from: https://github.com/HDFGroup/vol-rest
For HDF5 1.12, use the hdf5_1_12_update branch



https://github.com/HDFGroup/vol-rest

L
Features not yet supported w1 @
The HDF Group

Featre HSDS hbpyd RESTVOL

Object reference

Region Reference

Fill Value

Virtual Datasets

Variable Length Datatypes
Dataset SQL Query*

© O ® 0 0 6
© O ® 0 0 6
®» ® ® ® O &

- *Need new VOL api?



REST VOL Wishlist - @

The HDF Group

Interesting things that would be nice to have:

. Support multi-threaded clients

. Support asynchronous AP

- REST VOL activation based on file prefix — e.g. “hdf5://”
- Paginated read/write for large dataset operations

- Retry logic for HTTP timeouts, Service Unavailable

- Support for other languages: Java, .Net, R, etc.



. . T
Pros and cons of running a service o ©
The HDF Group

- Accessing a sharded data store via a service (HSDS) is nice:
. Server mediates access to the storage system
. Server can speed things up by caching recently accessed data
- Only the data the client needs needs to be transmitted outside the data center
- HSDS running on a large server or cluster can provide more processing capacity
than a client might have
- Unless it’s not:
- Don’t want to bother setting up, running service

- Challenge to scale capacity of service to clients



. - el N
Direct Access Project w1 ©
The HDF Group

Provide equivalent functionality of HSDS in a library

* SN code would run in a sub-process

* DN code would run in one or more sub-processes (e.g.
based on number of cores)

» Sub-processes would directly access storage system

« Communication between parent processes and sub-
processes would be http via localhost

» Sub-processes shutdown when last file is closed

* The same HSDS storage schema would be used
« (Can switch between direct access and server as

needed




. . T
Diect Access System Diagram ra ©
The HDF Group

h5pyd




Direct Access VOL plugin rr ©
The HDF Group

.- For C/C++ apps, the direct access model could be implemented as a VOL connector
- Other than launching the sub-processes the VOL would work in the same way as the

REST VOL, so it probably makes sense to include this functionality in the REST VOL

rather than create a new VOL
. With direct access HDF5 lib + REST VOL enables sharded data as an alternative to

the HDF5 file format
- Enables multi-threading
. Cloud optimized storage

. Crash-proof



. L =
Questions? w1 @
The HDF Group




Try it out! ./
The HDF Group

et the software here:

« HSDS: https://github.com/HDFGroup/hsds

» Hb5pyd: https://github.com/HDFGroup/hSpyd

 REST VOL: https://github.com/HDFGroup/vol-rest

 REST APl documentation:
hitps://github.com/HDFGroup/hdf-rest-api

* Example programs:
https://github.com/HDFGroup/hdflab_examples



https://github.com/HDFGroup/hsds
https://github.com/HDFGroup/h5pyd
https://github.com/HDFGroup/vol-rest
https://github.com/HDFGroup/hdflab_examples

