
Proprietary and Confidential. Copyright 2018, The HDF Group.

REST VOL for HSDS and
HDF Sharded Data Storage

John Readey

2

• Sharded Data Storage
• REST VOL

• Direct Access

Overview

3

Instead of managing HDF5 objects (datasets, groups, chunks) within a POSIX file store
them as separate files (or as objects within an object storage system such as S3)

Sharded data concept

For meta data (datasets and groups), a self-descriptive format such as
JSON can be used

For chunks, store as binary objects for efficiency

4

• Limit maximum size of any object

• -> Object storage systems typically don’t support partial writes, so large objects

are inefficient to update

• Supporting parallelism is easier

• -> no file locking needed

• No need to manage free space, key-value mappings, etc

• -> storage systems have gotten pretty good at doing this for you

• No need to worry about system crash leaving you with a corrupted HDF5 files

• -> worse case you lose one object, with object storage not even that

Why a sharded data format?

5

• Convenience of having one file vs lots of small files

• Maybe not as important given tooling to abstract this from the user

• E.g. hstouch, hscopy, hsrm tools

• Filesystems have trouble dealing with large number of files (particularly within one
directory)

• Not sure this is a problem with modern Linux filesystems

• Certainly not an issue with object storage systems

Case against sharded storage

6HSDS shard schema example

root_obj_id/
group.json
obj1_id/

group.json
obj2_id/

dataset.json
0_0
0_1

obj3_id/
dataset.json
0_0_2
0_0_3

Observations:
• Metadata is stored as JSON
• Chunk data stored as binary blobs
• Self-explanatory
• One HDF5 file can translate to lots of

objects
• Flat hierarchy – supports HDF5

multilinking
• Can limit maximum size of an object
• Can be used with Posix or object

storage
Schema is documented here:
https://github.com/HDFGroup/hsds/blob/master/docs/design/obj_store_schema/obj_store_schema_v2.md

https://github.com/HDFGroup/hsds/blob/master/docs/design/obj_store_schema/obj_store_schema_v2.md

7

• It can be useful to divvy up the objects within an HDF5 domain into roughly equal
size collections – for instance we have n workers and we’d like to perform some

action on the domain

• CRUSH algorithm approach: hash key and take modulo of number of workers

• Decentralized, no book keeping required

Storage Partitioning

8

• The tool “hsload” will convert an HDF5 file to the sharded format (using HSDS)
• Conversely, the “hsget” tool will take the shaded format and reconstruct the HDF5

file

• Data is preserved after a round trip

Conversion from HDF5 files to sharded files

9HDF5 file linking

• Converting large HDF5 files (or a large collection of files) to the
sharded format is time consuming and effectively doubles the storage
requirements

• Rather than converting the entire file to the HDF Schema, just the
metadata can be imported (typically <1% of the file)

• The sharded format will store a map to the chunks in the original file
• Dataset reads are converted to Range Gets on the stored file
• It is also possible to construct a server file that aggregates multiple

stored files (similar to how the HDF5 library VDS feature works)

10REST VOL Plugin

• The HDF5 VOL architecture is a plugin layer for HDF5
• Public API stays the same, but different back ends can be implemented

• REST VOL substitutes REST API requests for file i/o actions

• C/Fortran applications should be able to run with minor tweaks
• Downloadable from: https://github.com/HDFGroup/vol-rest

For HDF5 1.12, use the hdf5_1_12_update branch

https://github.com/HDFGroup/vol-rest

11Features not yet supported

• *Need new VOL api?

Feature HSDS h5pyd RESTVOL
Object reference J J L

Region Reference L L L

Fill Value L J L

Virtual Datasets L L L

Variable Length Datatypes J J L

Dataset SQL Query* J J L

12REST VOL Wishlist

Interesting things that would be nice to have:
• Support multi-threaded clients

• Support asynchronous API

• REST VOL activation based on file prefix – e.g. “hdf5://”
• Paginated read/write for large dataset operations

• Retry logic for HTTP timeouts, Service Unavailable
• Support for other languages: Java, .Net, R, etc.

13Pros and cons of running a service

• Accessing a sharded data store via a service (HSDS) is nice:
• Server mediates access to the storage system

• Server can speed things up by caching recently accessed data

• Only the data the client needs needs to be transmitted outside the data center
• HSDS running on a large server or cluster can provide more processing capacity

than a client might have
• Unless it’s not:

• Don’t want to bother setting up, running service

• Challenge to scale capacity of service to clients

14Direct Access Project

Provide equivalent functionality of HSDS in a library
• SN code would run in a sub-process
• DN code would run in one or more sub-processes (e.g.

based on number of cores)
• Sub-processes would directly access storage system
• Communication between parent processes and sub-

processes would be http via localhost
• Sub-processes shutdown when last file is closed
• The same HSDS storage schema would be used
• Can switch between direct access and server as

needed

15Diect Access System Diagram

16Direct Access VOL plugin

• For C/C++ apps, the direct access model could be implemented as a VOL connector
• Other than launching the sub-processes the VOL would work in the same way as the

REST VOL, so it probably makes sense to include this functionality in the REST VOL

rather than create a new VOL
• With direct access HDF5 lib + REST VOL enables sharded data as an alternative to

the HDF5 file format
• Enables multi-threading

• Cloud optimized storage

• Crash-proof

17Questions?

18Try it out!

Get the software here:

• HSDS: https://github.com/HDFGroup/hsds
• H5pyd: https://github.com/HDFGroup/h5pyd
• REST VOL: https://github.com/HDFGroup/vol-rest
• REST API documentation:

https://github.com/HDFGroup/hdf-rest-api
• Example programs:

https://github.com/HDFGroup/hdflab_examples

https://github.com/HDFGroup/hsds
https://github.com/HDFGroup/h5pyd
https://github.com/HDFGroup/vol-rest
https://github.com/HDFGroup/hdflab_examples

