
Ed
Hartnett

 10/15/20

The PIO Library for Scalable
HPC Performance

Abstract
The PIO C and Fortran libraries enable high-performance, scalable I/O on HPC
systems with many processors. Doing I/O from many processors at the same time
causes system contention and inefficiencies. Instead, users may select a small
number of processors to be responsible for all I/O. Code on the computational
processors calls netCDF I/O functions as usual, but instead of writing directly to
disk, the data are sent with MPI to the I/O processors, who execute the disk I/O.
The PIO libraries are available in C and Fortran, and work with Unidata’s netCDF
package, the parallel-netcdf package from Argonne Labs, and the HDF5 library
from the HDF Group. The PIO libraries are maintained and distributed by NCAR
and NOAA, and are free and open software. Recent improvements in PIO include
full netCDF integration, allowing users to use existing netCDF code bases with
little modification.

PIO Summary
● C/Fortran libraries for HPC systems to provide scalable netCDF I/O on

thousands or tens of thousands of processors.
● Uses netCDF classic (sequential), netCDF/HDF5 (parallel or sequential),

pnetcdf (parallel), under the covers.
● Supports two modes:

○ Intracomm - one computational unit with shared I/O processors.
○ Async - many computational units with dedicated I/O processors.

● Supprts two APIs:
○ Classic - C/Fortran PIOc_* and PIO_ functions.
○ NetCDF Integration - C/Fortran netCDF API calls with PIO additions.

● Used in CESM, ESMF.

I/O on Small Processor Counts is Easy
● One processor can use sequential access to netCDF/HDF5 files. Easy!
● Tens of processors can use parallel access to netCDF/HDF5 files. Not as

easy, but simple enough.

I/O on One or Few
Processors

Ed Hartnett 6/1/19

Sequential I/O:
One processor
writes to disk.
The good old
days!

Parallel I/O: Multiple
processors each read/write
to parallel disk system.
Higher bandwidth is
available than with
sequential I/O. Does not
scale well past 10s or 100s
of processors.

One Processor
Few Processors

I/O on Large Processor Counts is Harder
● Now we need to run on tens of thousands of processors.
● Parallel I/O does not scale - once the (relatively few) I/O channels to disk

hardware are filled, processors wait.
● A solution is to designate a subset of processors to handle all I/O, and buffer

I/O operations.
● This may be done with the PIO library.

I/O on Many Processors
(PIO Intracomm Mode)

With thousands of
processors, some small
subset must be
designated for I/O. If all
processors attempt to
access disks directly,
they will all end up
waiting.

MPI

Processors access I/O
processors for I/O. I/O
processors buffer data
and read/write to disks.computational processors I/O processors

In PIO Intracomm mode, the
I/O processors are a subset of
the computation processors,
and they also do computational
processing.

Multi-Level Parallelism
● A further refinement is to have multiple computational components, all using

the same dedicated I/O component to do I/O.
● Now computation can proceed while I/O is taking place.

I/O on Many Processors
(PIO Async Mode)

Ed Hartnett 6/1/19

I/O processors are
dedicated to I/O and don’t
do computational work.

I/O processors

computational unit 1

computational unit 2

computational unit 3

Each computational unit
runs independent code.
All I/O goes to the I/O
processors.

Computational components
make netCDF-like calls to
perform I/O. The PIO library
transfers the data to the I/O
nodes, which perform the disk
I/O asynchronously.

PIO Fortran Library

PIO C Library

User C Code

netCDF C Library pnetcdf C Library

HDF5 C Library

zlib Library

netCDF CDFxnetCDF-4/HDF5

PIO Library Architecture

User Code

Pio Code

3rd Party
Libraries

data

Ed Hartnett, 5/1/19

User Fortran Code

PIO Classic (without NetCDF Integration)
 ret = PIO_openfile(pio_tf_iosystem_, pio_file, tgv_iotype, tgv_fname, PIO_write)

 ret = PIO_redef(pio_file)

 ret = PIO_def_dim(pio_file, 'dummy_dim_def_var', 100, pio_dim)

 ret = PIO_def_var(pio_file, 'dummy_var_def_var', PIO_int, (/pio_dim/), pio_var)

 ret = PIO_enddef(pio_file)

 ...

PIO with NetCDF Integration

 if ((ret = nc_create(filename, NC_CLOBBER|NC_PIO, &ncid)))
 return ret;
 if ((ret = nc_def_dim(ncid, DIM_NAME_S1, DIM_LEN_S1, &dimid)))
 return ret;
 if ((ret = nc_def_var(ncid, VAR_NAME_S1, NC_INT, NDIM_S1, &dimid, &varid)))
 return ret;
 if ((ret = nc_enddef(ncid)))
 return ret;

Computational Code uses NetCDF API for PIO
● IO System must be initialized with a function call

nc_init_intracomm()/nc_init_async().
● Files are opened/created with NC_PIO flag.
● The computational components make netCDF calls.
● The PIO library handles the transferring of data to/from the I/O processors,

which do the actual disk I/O.
● Distributed data read/writes are handled with new functions

nc_get_vard_*()/nc_put_vard_*().

Global vs. Local Arrays
● The shape of a netCDF record defines the global data space.
● Once divided on to many processors, each processor has a subset of the

global data space - the local array.
● Together, all local arrays add up to the global array.
● There may be halos - data that are needed for computation but are outside

the area that the processor should be writing.

PIO Distributed Arrays
● Each processor within a computational unit has its region of responsibility

within the global variable data space.
● PIO allows users to specify this decomposition.
● Different read and write decompositions may be used to support halos.

PIO Decomposition
Decomposing an 8x8 Array over 16 Processors

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

0 1 2 3

8 9 10 11

16 17 18 19

24 25 26 27

32 33 34 35

40 41 42 43

48 49 50 51

56 57 58 59

0 1

3

4 5

6 7

8 9

10 11

12 13

14 15

2

4 5 6 7

12 13 14 15

20 21 22 23

28 29 30 31

36 37 38 39

44 45 46 47

52 53 54 55

60 61 62 63

global

local

cpu

The global 8x8 array needs to be
distributed to 16 processors.

Each processor
handles 4 elements
of the array.

Reading/Writing Distributed Data
 /* Calculate a decomposition for distributed arrays. */
 elements_per_pe = DIM_LEN_X * DIM_LEN_Y / (ntasks - num_io_procs);
 for (i = 0; i < elements_per_pe; i++)
 compdof[i] = (my_rank - num_io_procs) * elements_per_pe + i;

 /* Create the PIO decomposition for this test. */
 if (nc_def_decomp(iosysid, PIO_INT, NDIM2, &dimlen[1], elements_per_pe,
 compdof, &ioid, 1, NULL, NULL)) PERR;

 /* Create some data on this processor. */
 if (!(my_data = malloc(elements_per_pe * sizeof(int)))) PERR;
 for (i = 0; i < elements_per_pe; i++)
 my_data[i] = my_rank * 10 + i;

 /* Write some data with distributed arrays. */
 if (nc_put_vard_int(ncid, varid, ioid, 0, my_data)) PERR;

Decompositions Stored in Files
● Once a decomposition has

been created, it can be
written to file, and read in
again to initialize a
decomposition object.

● Decomposition files can be
text (legacy) or netCDF
(new).

netcdf darray_no_async_decomp {
dimensions:

dims = 2 ;
task = 16 ;
map_element = 4 ;

variables:
int global_size(dims) ;
int maplen(task) ;
int map(task, map_element) ;

// global attributes:
:PIO_library_version = "2.4.2" ;
:max_maplen = 4 ;
:title = "Example Decomposition from

darray_no_async.c" ;
:history = "This file is created by the

program darray_no_async in the PIO C library" ;
:source = "Decomposition file produced by

PIO library." ;
:array_order = "C" ;
:backtrace = “...”

Where Is PIO Used?
● PIO has been in use in CESM (Community Earth System Model) since

around 2008.
○ Standard spatial resolution is 1 deg atmosphere and 1 degree ocn. As a climate model we

don't normally write per timestep, very high temporal resolution would be hourly. High is daily
and typical is monthly.

○ High spatial resolution is 1/4 degree atmosphere and 1/10 degree ocn.

● The cmip6 experiments which are currently underway have produced some 2
PB of data so far - all written using the pio library.

Future Plans
● Enable new compression options for netCDF-4 files.
● More performance testing with new versions of I/O libraries.
● Further testing for NOAA FV3 I/O.

PIO Conclusion
● Get release 2.5.2 at https://github.com/NCAR/ParallelIO. (Autotools and

CMake builds available.)
● Documentation: https://ncar.github.io/ParallelIO/
● Look for PIO poster at the next AMS meeting.

https://github.com/NCAR/ParallelIO
https://ncar.github.io/ParallelIO/

