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Also...

This talk will focus on the service, but if you missed yesterday’s talk on h5pyd
(Python client library for HSDS), It should be available as a video soon.
And tomorrow I'll be talking about the REST VOL (C client for HSDS)
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HSDS — Highly Scalable Data Service -- Is a REST-based web service for HDF

data
Design criteria:
Performant — good to great performance
Scalable — Run across multiple cores and/or clusters
Feature complete — Support (most) of the features provided by the HDF5 library
Utilize POSIX or object storage (e.g. AWS S3, Azure Blob Storage)

Note: HSDS was originally developed as a NASA ACCESS 2015
project: https://earthdata.nasa.gov/esds/competitive-
programs/access/hsds



https://earthdata.nasa.gov/esds/competitive-programs/access/hsds
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HSDS is implemented as a set of containers and can be run on
common container management systems:

kubernetes
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Azure Kubernetes Service (AKS)
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HDF5 Feature Support
Groups, Links (including multi-link), Attributes, Datasets, Committed Datatypes
Simple and Compound datatypes
Hyperslab and Point Selections (also SQL-style queries)
Support for compression
Standard HDF5 shuffle and deflate filters
Support for BLOSC compressors

Container based
Run In Docker or Kubernetes or DC/OS

Scalable performance:
Can cache recently accessed data in RAM
Can parallelize requests across multiple nodes
More nodes =>» better performance
Cluster based — any number of machines can be used to constitute the server
Multiple clients can read/write to same data source
No limit to the amount of data that can be stored by the service
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Before talking about HSDS, let's ask why a
service might be a handy thing to have.
Some reasons why this might be of interest...
Allow remote access to large datasets (the inertia of big data)
Provide language-neutral interface to HDF
Enable web-based applications
Faclilitate container-based applications (Docker, Kubernetes, Mesos)

Explore alternative implementations of HDF — object-storage, asyncio, non-MP|

parallelism, etc.
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REST Is a (loose) standard for creating web-based APIs

Typically built on top of HTTP

Uses the 4 most common HTTP operations: GET, POST, PUT, DELETE
Stateless — one operation doesn't depend on another

URI based — every object has a unigue identifier

Language Neutral

The HDF REST API
The HDF REST API Is a specification for a web API that enables the HDF

data model

Used by HSDS (and also h5serv — an earlier prototype)

Other implementations are free to adopt it as well
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What makes 1t RESTful? e HOF Glroup

. Client-server model

. Stateless — (no client context stored on server)

. Cacheable — clients can cache responses

- Resources identified by URIs (datasets, groups, attributes, etc)

. Standard HTTP methods and behaviors:

Get a description of a resource

POST N N Create a new resource

PUT N Y Create a new named resource

DELETE N Y Delete a resource



Example URI

scheme

domain

port

http://kitalabhsds.hdfgroup.org: 7253
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Scheme: the connection protocol

resource

/datasets/34..d5e/value

Query param

?select=[0:4,0:4]

Endpoint: DNS name for the server (could be a load balancer)

Port: the port the server Is running on
Resource: identifier for the resource (dataset values in this case)

Query param: Modify how the data will be returned

* (e.q. hyperslab selection)

Request response can either be:
« JSON - for metadata
» Binary —for dataset reads
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Object Store

. Client: Any user of the service
* Load balancer — distributes requests to Service nodes

« Service Nodes — processes requests from clients (with help from Data Nodes)
» Data Nodes — responsible for partition of Object Store

» (QObject Store: Base storage service (e.g. AWS S3)




HDF Sharded Schema

Why a sharded data format”?

Legend:

Dataset is partitioned into chunks
Each chunk stored as an object (file)
Dataset meta data (type, shape,
attributes, etc.) stored in a separate
object (as JSON text)

Limit maximum size of any object
Support parallelism for read/write

Only data that is modified needs to be
updated

Multiple clients can be reading/updating

the same “file”

. @

Big Idea: Map individual HDF5
objects (datasets, groups,
chunks) as Object Storage

Obijects

I L/1
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Don't need to manage free space

Each chunk (heavy outlines) get
persisted as a separate object
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Client Software Stack

C/Fortran Web

HDF Services

HDF REST API (hitp)

Note: Clients don’t need to know
what’s going on inside this box!

CMD Line




A word about Python... 14
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HSDS is implemented in Python which is not thought of
as a high performance language. In practice though
it's worked out quite well based on the following
factors:

- HSDS utilizes Python packages (e.g. BLOSC, NumPy) that are wrappers around
optimized C (Fortran?) code

- HSDS uses Numba (basically a just-in-time compiler for Python) to speed up critical

code blocks

- Heavy use of asyncio (see next two slides) makes efficient use of CPU for 10 based

workloads
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Python async in HSDS The HDF Group

- HSDS relies heavily on Python’s new asyncio module

- Concurrency based on tasks (rather than say multithreading or multiprocessing)

. Task switching occurs when process would otherwise wait on 1/O

Example:

async def my func() :
a regular function call ()

awalt a blocking call ()

o Control will switch to another task when await is encountered
» Result is the app can do other useful work vs. blocking
» Supporting 1000’s of concurrent tasks within a process is quite

feasible



Parallelizing data access with asyncio w1 ©
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- SN node invoking parallel requests on DN nodes

tasks = []

for chunk 1d in my chunk list:
task asyncio.ensure future (read chunk query(chunk 1d))
tasks.append(task)

awalt asyncilo.gather (*tasks, loop=loop)

» Read_chunk_query makes a http request to a specific DN node

» Set of DN nodes can be reading from S3, decompression and
selecting requested data Iin parallel

* Asyncio.gather waits for all tasks to complete before continuing

* Meanwhile, new requests can be processed by SN node



Security — authentication and authorization . @
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In a web service it's important to verify who's
who (authentication) and only allow permitted 5@%
actions (authorization \J

SECURITY
» Authentication - HSDS supports several authentication ‘e
protocols: "

« HITP Basic Auth

» Azure Active Directory — (OAuth 2.0)

* (Google OpenlD (also Oauth 2.0)
» Authorization — Access Control Lists (ACLSs)

» Per domain list of which users can perform which

actions (read, update, delete, etc)
» Role Base Access Control (RBAC) — enable permission

based on user groups
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et the software here:

« HSDS: https://qgithub.com/HDFGroup/hsds

» HS5pyd: https://github.com/HDFGroup/hSpyd

 REST VOL: https://github.com/HDFGroup/vol-rest

 REST APl documentation:
https://github.com/HDFGroup/hdf-rest-api

e Example programs:
https://qgithub.com/HDFGroup/hdflab_examples



https://github.com/HDFGroup/hsds
https://github.com/HDFGroup/h5pyd
https://github.com/HDFGroup/vol-rest
https://github.com/HDFGroup/hdflab_examples

