HSDS:

A REST Service for HDF5

John Readey

LI

INL’1
The HDF Group

Proprietary and Confidential. Copyright 2018, The HDF Group.

. O

Overview L/
The HDF Group

Why a HDF Service?
What's REST?
HSDS features
Architecture

Security

Demo

Also...

This talk will focus on the service, but if you missed yesterday’s talk on h5pyd
(Python client library for HSDS), It should be available as a video soon.
And tomorrow I'll be talking about the REST VOL (C client for HSDS)

. ©

Introducing HSDS /1

The HDF Group

HSDS — Highly Scalable Data Service -- Is a REST-based web service for HDF

data
Design criteria:
Performant — good to great performance
Scalable — Run across multiple cores and/or clusters
Feature complete — Support (most) of the features provided by the HDF5 library
Utilize POSIX or object storage (e.g. AWS S3, Azure Blob Storage)

Note: HSDS was originally developed as a NASA ACCESS 2015
project: https://earthdata.nasa.gov/esds/competitive-
programs/access/hsds

https://earthdata.nasa.gov/esds/competitive-programs/access/hsds

. O

HSDS Platforms ma

The HDF Group

HSDS is implemented as a set of containers and can be run on
common container management systems:

kubernetes

il _Ji
IpIpIp
i) _Jil

Azure Kubernetes Service (AKS)

waw

Using different supported storage systems:
g --v‘i_yf"'a‘haz,on 53 Microsoft Azure

O ®
w " webservices™ Blob Storage 01

X OpenlO CEDh

POSIX
Filesystem

LI\
HSDS Features /1 @
The HDF Group

HDF5 Feature Support
Groups, Links (including multi-link), Attributes, Datasets, Committed Datatypes
Simple and Compound datatypes
Hyperslab and Point Selections (also SQL-style queries)
Support for compression
Standard HDF5 shuffle and deflate filters
Support for BLOSC compressors

Container based
Run In Docker or Kubernetes or DC/OS

Scalable performance:
Can cache recently accessed data in RAM
Can parallelize requests across multiple nodes
More nodes =>» better performance
Cluster based — any number of machines can be used to constitute the server
Multiple clients can read/write to same data source
No limit to the amount of data that can be stored by the service

. O

Why an HDF Service? 1
The HDF Group

Before talking about HSDS, let's ask why a
service might be a handy thing to have.
Some reasons why this might be of interest...
Allow remote access to large datasets (the inertia of big data)
Provide language-neutral interface to HDF
Enable web-based applications
Faclilitate container-based applications (Docker, Kubernetes, Mesos)

Explore alternative implementations of HDF — object-storage, asyncio, non-MP|

parallelism, etc.

=)o

What 1Is REST? . O

The HDF Group

REST Is a (loose) standard for creating web-based APIs

Typically built on top of HTTP

Uses the 4 most common HTTP operations: GET, POST, PUT, DELETE
Stateless — one operation doesn't depend on another

URI based — every object has a unigue identifier

Language Neutral

The HDF REST API
The HDF REST API Is a specification for a web API that enables the HDF

data model

Used by HSDS (and also h5serv — an earlier prototype)

Other implementations are free to adopt it as well

A simple diagram of the HDF REST AP

The HDF Group

{attribute collection}/{name}] GET
Mew domain ﬁ e C
. PUT P T
HDF5 Attribute L
el vae DELETE i T
Mew aftribute i /datasets oot ..
; M nfinked) dataset ™
DELETE /' HDF5 Dataset collection gw luninked) datase
F ‘- PDS'I' r \."1

Jdatatypes/{id}]

r: .
2 k DELETE %
!

SEroups \
. GET . E
HDF5 Group collection Hew lunlinked) group ;

HDF5 Domain

DELETE

O HDF5 Datatype \ PosT_f*
- .. HDF5 Attribute collection _oeuere
y - l Sdatatypes {:’

HDF5 Datatype collection | GET New unlinked dafofype object

“x“ (_[/(datasets|datatypes|groups)/{id}/attributes] k (_ POST (’
‘\“1 k DELETE ,
N RESTful HDF5

e T T ~J HDF5 Atfribute collection P
. HOF5 Root .-~
\ J /datasets/{id}]
r“r z,"i DELETE) [fdatasets /{id}/type

! Type GET Jgroups/{id}

; GET——-/ GET can'

1 § an't dalete the root]

: _ DELETE
| DELETE (_
H [fdatasetsf{id}fshape Concade
i GET —
E: !,-' BT \ Shape [Jgroups /{id}/1links
Il .! I ~
i i fdatasets/id}/shape/selections s "

i GET] Link collection GET

| : Hypersiabs Select HDF5 GrCIUp '

% ' w BOST elechions HDF5 Dataset DELETE

.
X Point seleciion

[fgrnupsf{id}flinksf{name}
Link

J U

DELETE
. [fdatasets Sid}/value Value y k
GET
5, GET
e PUT Mew link)
N e POST f
. e HOFS Atftribute collection J PUT

I DELETE

set the destinaticon

. ©

What makes 1t RESTful? e HOF Glroup

. Client-server model

. Stateless — (no client context stored on server)

. Cacheable — clients can cache responses

- Resources identified by URIs (datasets, groups, attributes, etc)

. Standard HTTP methods and behaviors:

Get a description of a resource

POST N N Create a new resource

PUT N Y Create a new named resource

DELETE N Y Delete a resource

Example URI

scheme

domain

port

http://kitalabhsds.hdfgroup.org: 7253

N L/’1
The HDF Group

. @

Scheme: the connection protocol

resource

/datasets/34..d5e/value

Query param

?select=[0:4,0:4]

Endpoint: DNS name for the server (could be a load balancer)

Port: the port the server Is running on
Resource: identifier for the resource (dataset values in this case)

Query param: Modify how the data will be returned

* (e.q. hyperslab selection)

Request response can either be:
« JSON - for metadata
» Binary —for dataset reads

R

HSDS Architecture mVa

The HDF Group

Object Store

. Client: Any user of the service
* Load balancer — distributes requests to Service nodes

« Service Nodes — processes requests from clients (with help from Data Nodes)
» Data Nodes — responsible for partition of Object Store

» (QObject Store: Base storage service (e.g. AWS S3)

HDF Sharded Schema

Why a sharded data format”?

Legend:

Dataset is partitioned into chunks
Each chunk stored as an object (file)
Dataset meta data (type, shape,
attributes, etc.) stored in a separate
object (as JSON text)

Limit maximum size of any object
Support parallelism for read/write

Only data that is modified needs to be
updated

Multiple clients can be reading/updating

the same “file”

. @

Big Idea: Map individual HDF5
objects (datasets, groups,
chunks) as Object Storage

Obijects

I L/1
The HDF Group

A

Don't need to manage free space

Each chunk (heavy outlines) get
persisted as a separate object

. ©

Client-side support /1
The HDF Group

Client Software Stack

C/Fortran Web

HDF Services

HDF REST API (hitp)

Note: Clients don’t need to know
what’s going on inside this box!

CMD Line

A word about Python... 14

The HDF Group

HSDS is implemented in Python which is not thought of
as a high performance language. In practice though
it's worked out quite well based on the following
factors:

- HSDS utilizes Python packages (e.g. BLOSC, NumPy) that are wrappers around
optimized C (Fortran?) code

- HSDS uses Numba (basically a just-in-time compiler for Python) to speed up critical

code blocks

- Heavy use of asyncio (see next two slides) makes efficient use of CPU for 10 based

workloads

. @

Python async in HSDS The HDF Group

- HSDS relies heavily on Python’s new asyncio module

- Concurrency based on tasks (rather than say multithreading or multiprocessing)

. Task switching occurs when process would otherwise wait on 1/O

Example:

async def my func() :
a regular function call ()

awalt a blocking call ()

o Control will switch to another task when await is encountered
» Result is the app can do other useful work vs. blocking
» Supporting 1000’s of concurrent tasks within a process is quite

feasible

Parallelizing data access with asyncio w1 ©
The HDF Group

- SN node invoking parallel requests on DN nodes

tasks = []

for chunk 1d in my chunk list:
task asyncio.ensure future (read chunk query(chunk 1d))
tasks.append(task)

awalt asyncilo.gather (*tasks, loop=loop)

» Read_chunk_query makes a http request to a specific DN node

» Set of DN nodes can be reading from S3, decompression and
selecting requested data Iin parallel

* Asyncio.gather waits for all tasks to complete before continuing

* Meanwhile, new requests can be processed by SN node

Security — authentication and authorization . @

The HDF Group
In a web service it's important to verify who's
who (authentication) and only allow permitted 5@%
actions (authorization \J

SECURITY
» Authentication - HSDS supports several authentication ‘e
protocols: "

« HITP Basic Auth

» Azure Active Directory — (OAuth 2.0)

* (Google OpenlD (also Oauth 2.0)
» Authorization — Access Control Lists (ACLSs)

» Per domain list of which users can perform which

actions (read, update, delete, etc)
» Role Base Access Control (RBAC) — enable permission

based on user groups

=)o

Questions? . ©
The HDF Group

Try 1t out! . ©

The HDF Group

et the software here:

« HSDS: https://qgithub.com/HDFGroup/hsds

» HS5pyd: https://github.com/HDFGroup/hSpyd

 REST VOL: https://github.com/HDFGroup/vol-rest

 REST APl documentation:
https://github.com/HDFGroup/hdf-rest-api

e Example programs:
https://qgithub.com/HDFGroup/hdflab_examples

https://github.com/HDFGroup/hsds
https://github.com/HDFGroup/h5pyd
https://github.com/HDFGroup/vol-rest
https://github.com/HDFGroup/hdflab_examples

