
Proprietary and Confidential. Copyright 2018, The HDF Group.

HSDS:

A REST Service for HDF5

John Readey

2

• Why a HDF Service?

• What’s REST?

• HSDS features

• Architecture

• Security

• Demo

Overview

Also…
This talk will focus on the service, but if you missed yesterday’s talk on h5pyd

(Python client library for HSDS), it should be available as a video soon.

And tomorrow I’ll be talking about the REST VOL (C client for HSDS)

3

HSDS – Highly Scalable Data Service -- is a REST-based web service for HDF

data

Design criteria:

• Performant – good to great performance

• Scalable – Run across multiple cores and/or clusters

• Feature complete – Support (most) of the features provided by the HDF5 library

• Utilize POSIX or object storage (e.g. AWS S3, Azure Blob Storage)

Introducing HSDS

Note: HSDS was originally developed as a NASA ACCESS 2015

project: https://earthdata.nasa.gov/esds/competitive-

programs/access/hsds

https://earthdata.nasa.gov/esds/competitive-programs/access/hsds

4HSDS Platforms

POSIX

Filesystem

HSDS is implemented as a set of containers and can be run on

common container management systems:

Using different supported storage systems:

5HSDS Features

• HDF5 Feature Support

• Groups, Links (including multi-link), Attributes, Datasets, Committed Datatypes

• Simple and Compound datatypes

• Hyperslab and Point Selections (also SQL-style queries)

• Support for compression

• Standard HDF5 shuffle and deflate filters

• Support for BLOSC compressors

• Container based

• Run in Docker or Kubernetes or DC/OS

• Scalable performance:

• Can cache recently accessed data in RAM

• Can parallelize requests across multiple nodes

• More nodes ➔ better performance

• Cluster based – any number of machines can be used to constitute the server

• Multiple clients can read/write to same data source

• No limit to the amount of data that can be stored by the service

6

• Allow remote access to large datasets (the inertia of big data)

• Provide language-neutral interface to HDF

• Enable web-based applications

• Facilitate container-based applications (Docker, Kubernetes, Mesos)

• Explore alternative implementations of HDF – object-storage, asyncio, non-MPI

parallelism, etc.

Why an HDF Service?

Before talking about HSDS, let’s ask why a

service might be a handy thing to have.

Some reasons why this might be of interest…

7

• REST is a (loose) standard for creating web-based APIs

• Typically built on top of HTTP

• Uses the 4 most common HTTP operations: GET, POST, PUT, DELETE

• Stateless – one operation doesn’t depend on another

• URI based – every object has a unique identifier

• Language Neutral

What is REST?

The HDF REST API

• The HDF REST API is a specification for a web API that enables the HDF

data model

• Used by HSDS (and also h5serv – an earlier prototype)

• Other implementations are free to adopt it as well

8A simple diagram of the HDF REST API

9
What makes it RESTful?

• Client-server model

• Stateless – (no client context stored on server)

• Cacheable – clients can cache responses

• Resources identified by URIs (datasets, groups, attributes, etc)

• Standard HTTP methods and behaviors:

Method Safe Idempotent Description

GET Y Y Get a description of a resource

POST N N Create a new resource

PUT N Y Create a new named resource

DELETE N Y Delete a resource

10
Example URI

http://kitalabhsds.hdfgroup.org:7253/datasets/34…d5e/value?select=[0:4,0:4]

scheme domain port resource Query param

• Scheme: the connection protocol

• Endpoint: DNS name for the server (could be a load balancer)

• Port: the port the server is running on

• Resource: identifier for the resource (dataset values in this case)

• Query param: Modify how the data will be returned

• (e.g. hyperslab selection)

Request response can either be:

• JSON – for metadata

• Binary – for dataset reads

11HSDS Architecture

Legend:

• Client: Any user of the service

• Load balancer – distributes requests to Service nodes

• Service Nodes – processes requests from clients (with help from Data Nodes)

• Data Nodes – responsible for partition of Object Store

• Object Store: Base storage service (e.g. AWS S3)

12HDF Sharded Schema

Big Idea: Map individual HDF5

objects (datasets, groups,

chunks) as Object Storage

Objects
• Limit maximum size of any object

• Support parallelism for read/write

• Only data that is modified needs to be

updated

• Multiple clients can be reading/updating

the same “file”

• Don’t need to manage free space

Legend:

• Dataset is partitioned into chunks

• Each chunk stored as an object (file)

• Dataset meta data (type, shape,

attributes, etc.) stored in a separate

object (as JSON text)

Why a sharded data format?

Each chunk (heavy outlines) get

persisted as a separate object

13Client-side support

1

3

14A word about Python…

• HSDS utilizes Python packages (e.g. BLOSC, NumPy) that are wrappers around

optimized C (Fortran?) code

• HSDS uses Numba (basically a just-in-time compiler for Python) to speed up critical

code blocks

• Heavy use of asyncio (see next two slides) makes efficient use of CPU for IO based

workloads

HSDS is implemented in Python which is not thought of

as a high performance language. In practice though

it’s worked out quite well based on the following

factors:

15Python async in HSDS

• HSDS relies heavily on Python’s new asyncio module

• Concurrency based on tasks (rather than say multithreading or multiprocessing)

• Task switching occurs when process would otherwise wait on I/O

async def my_func():

a_regular_function_call()

await a_blocking_call()

• Control will switch to another task when await is encountered

• Result is the app can do other useful work vs. blocking

• Supporting 1000’s of concurrent tasks within a process is quite

feasible

1

5

Example:

16Parallelizing data access with asyncio

• SN node invoking parallel requests on DN nodes

tasks = []

for chunk_id in my_chunk_list:

task = asyncio.ensure_future(read_chunk_query(chunk_id))

tasks.append(task)

await asyncio.gather(*tasks, loop=loop)

• Read_chunk_query makes a http request to a specific DN node

• Set of DN nodes can be reading from S3, decompression and

selecting requested data in parallel

• Asyncio.gather waits for all tasks to complete before continuing

• Meanwhile, new requests can be processed by SN node

1

6

17Security – authentication and authorization

In a web service it’s important to verify who’s

who (authentication) and only allow permitted

actions (authorization

• Authentication - HSDS supports several authentication

protocols:

• HTTP Basic Auth

• Azure Active Directory – (OAuth 2.0)

• Google OpenID (also Oauth 2.0)

• Authorization – Access Control Lists (ACLs)

• Per domain list of which users can perform which

actions (read, update, delete, etc)

• Role Base Access Control (RBAC) – enable permission

based on user groups

18Questions?

19Try it out!

Get the software here:

• HSDS: https://github.com/HDFGroup/hsds

• H5pyd: https://github.com/HDFGroup/h5pyd

• REST VOL: https://github.com/HDFGroup/vol-rest

• REST API documentation:

https://github.com/HDFGroup/hdf-rest-api

• Example programs:

https://github.com/HDFGroup/hdflab_examples

https://github.com/HDFGroup/hsds
https://github.com/HDFGroup/h5pyd
https://github.com/HDFGroup/vol-rest
https://github.com/HDFGroup/hdflab_examples

