Concurrent HDF5:
A Community Contribution

Proposal

Quincey Koziol, LBNL
Chris Hogan, The HDF Group

Goals for Concurrent Multi-Threaded Access

e Long-Term
o Allow fully concurrent execution of all HDF5 API routines from multiple threads

e |Immediate
o Make a single HDF5 API routine thread-safe and fully concurrent when performing its
primary function, possibly under limited circumstances
m Ex: Allow fully concurrent execution of H5Dread from multiple threads, all the way
down to pread() in the sec2 (POSIX) VFD
o Allow fully concurrent execution of multiple HDF5 API routines, down to a logically
appropriate level
m Ex: Allow fully concurrent execution of all VOL operations, down to the callback to
the VOL connector

Current Concurrency Control in HDF5

Future Concurrency Control in HDF5

| App 1

~ L U ‘
€]] = B
N W
o B
®» 0 <[
]
5 D p H

J D/ Iy

[wors e, |

(G’(u (,wc/ec[Dd\'(a §+'uc+ur.es
t MM'{ R ¢

&

How to Make H5Dread MT-Safe

e Constraints:

@)

(@)
(@)
(@)

Contiguous dataset layout
Atomic (fixed-length) datatypes
No datatype conversions
No data transforms

m H5Pdata_transform
Serial /0

m sec2 (POSIX) VFD

e Support:

(@)

(@)

H5Dread operations to same or different datasets
Error handling

MT-Safe Infrastructure

e Infrastructure needed:
o New portable lock:
o Recursive readers/writer lock
o New implementations of HDF5's internal macros:
m “Private” FUNC_ENTER/LEAVE macros that acquire the global lock, for internal routines
m ERROR macros that acquire the global lock
e Or acquire it in the routines they invoke
m API TRACE macros that acquire the global lock
e Or acquire it in the routines they invoke
m “‘Public’ FUNC_ENTER/LEAVE macros that acquire reader or writer API Lock, for public
API routines
o Analyze definition of FUNC_ENTER/LEAVE macros that don’t acquire the global lock for internal
routines
m Use new private, global lock-acquisition FUNC_ENTER/LEAVE macros in those routines

Paving the way for Community Contributions

e We will modify the dataset open, read, and close paths, and the ID manager
o Leaving the rest for other contributors or ourselves as follow-on activities
o Most work is local in scope, restricted to compartments
m Except the interfacing macros and changes to the dataset memory structure
e Set up for community contributions

o We will have provided infrastructure changes
o Others can leverage the strategy/approach and those changes, too, in other code paths

e A possible community contribution opportunity:

o MT-Safe memory allocation would be a significant contribution
m All threads serialize here, including our work as we will guard using a global lock
m Making these routines MT-safe requires only internal, thus opaque, changes
m Needed changes are independent of our work, and vice versa

Conclusion

e Strategy for conversion of HDF5 library to full multi-threaded concurrency
o Technically sound
o Incrementally achievable
o Testable
e Production-quality code contribution
o Reduce technical debt (as code is refactored to be concurrent)
o Implement necessary reusable infrastructure
o Serve as example for others
e Opening for community contributions
o Engage community to bring more incremental improvements for a greatly desired capability

Locking / Concurrency Details

Concurrency Control - Now

Concurrency Control - Step 1
L Aee 1
J/ Q_G_Qh'(vowfﬁ Ve(“"f;f/e

e Rende rs/foury
‘T (Ie
' e - “APT Lcc/:"LaC/c

u"' “m"?/@l D “f
N D (@) tj /K (js'f’hc‘{“u,{,sq c‘

Concurrency Control - Step 1(a)
L Aee 1
J/ Qaeh"{'mwﬁ Vecwg;t,e

77— RQU‘JQ "‘5'/'4/*7"/0,,
’ Wi T ey i ”A-P,'C LOC/(. ”Loc/(

U v uuvc/pl D *f
J & T
\ D@m KT/ S+’Qe+u,{,5
”) QO({
3/
1
| H4DF5 Liheory

° - MM"Q%

Concurrency Control - Step 2

L ¥ L U L%‘V&Q}ﬁm e cursive
| r Wi y Rew ers/eur Ve, .
L‘p\iaéq o gg N ”A'P,,'L\ LOC/("L C/C

@ .
0 E] g D@Lj L/ un(jsu‘;ve/_gi Do“fc‘
\ P D | @@ Q 0 Yue L&V'PS
G RPCC«V Ce
o B H—ecersive 1 f
;' 0 Grlobaf 1, 1 8¥
GJ E] S ()1
TDFS Thary

l &u r,Wc/ec[Dd\{a §'7("t/\c+l/« res

" Mm'lex

Concurrency Control - Under Way

o

J/ l{/' J/ / J ‘ ({QQ"I"/"O\“# e (ukg,‘t/

Z‘f

e e
]L 1Reade r S Wiriter ?I/RQ?/JQP‘Y/Wff'\/o; LOC/C
€] S (APL Loc/('"
0] D!t © 1T Unguavdled Det
\ % a it =7 oC (jS'F’qc*/*we o
° Vo R
D , , .
] D D C ~t He Cursrepe '/[C«'/
r ? CT[OL""(LO [(?Y
E] EJ B} | Cci<
Ly
HDFGS Library |

t G{u owc/ec[Dd\‘la g‘fmc'f‘u reg
* ~ Ml ex

Concurrency Control - Almost Done

J/ ‘(/' J/ y/ _Sp ‘ Q_QQ:;"(ro\b\vﬁ Ve(ub'ﬁ"/"t/e
]L‘A T<Q°\J¢ rS l _Wr;"g’?,‘/fzqgl/ Q%i/bul-;“/p" Lac,(‘
] 23] ,S A‘P,L LDc/(‘ 0
0 Gj E a D c'[—s o UW(juan/{.i Do(‘fc‘
® O 0 |e o S+’qc‘{*u,95
g B e ~— RP Caurstey
D a) e
@ = D ! "G Lol L"?w/“f\/
(] aj b > L; OCI(
{-.’ D b Lc Your

—

Concurrency Control - Done!

| App 1

~ L 12 ‘
€]] = B
N W
o B
®» 0 <[
]
5 D p H

o © B/ ot
[wors e, |

(G’(u (,wc/e(! Dd\'(a §+'uc+ur45

t MM{Q%

Library Re-entrancy Now

Library Re-entrancy During Conversion

Write-Read

Write-Write

Read-Write

Read-Read

HDF5 Librar

Guarded & Unguarded Access to Same Data Structure

\

Reentrant recusiy,

Resfersfivrife, (e
APT L c

)
Oc/('(

‘RP Cursrep M
Glebarg,

e
c [(

(G{u avc/ec[Dd\'(a g*?uc"f‘uy”
* ~ Mt ax

Are all of these locks required?

L ¥ L U L%‘VQN}JWL e cursive
]Wr réd 4 Rewm QVS'/W;;"/O" o
B "APT Lock"L ck

@ [s
0 E] g D@Lj L/ unjsu‘;ve/_gi Do“fq
\ P D | 0@ Q 0 Yue L&V'PS
5 RPCC«V{‘FV
ml O [S e 1 4
;' 0 Grlobaf 1, 1 8¥
GJ E] S ()1
IDFT [hary |

(Gu utfc/ecl Dd\{a g+’uc+u reg
¢~ Mud RQ ¥

Avoiding Deadlocks

[Reseurce iy
D Gad

:Refaf&lfte l]\

Coding Details

H5Dread Implementation (For Reference)

herr t HS5Dread(hid t dset id, hid t mem type id, hid t mem space id, hid t file space id, hid t dxpl id, void *buf/*out*/)

{

H5VL_object_t
herr_t

*vol obj

ret_value =

FUNC_ENTER APT (FAIL)
H5TRACE6 ("e", "iiiii

SUCCEED;

= NULL;
/*

Return value */

mem_space_id, file_space_id, dxpl_id, buf);

/* Check arguments */
if (mem_space_id < 0)
HGOTO_ ERROR (H5E_ARGS, H5E BADVALUE, FAIL, "invalid memory dataspace ID")
if (file space id < 0) -
HGOTO_ERROR (H5E_ARGS, HS5E_BADVALUE, FAIL, "invalid file dataspace ID"
/* Get dataset pointer */
if (NULL == (vol obj = (H5VL object t *)H5I object verify(dset_id, H5I DATAS
HGOTO ERROR (H5E_ARGS, H5E_BADTYPE, FAIL, "dset id is not a dataset ID")
/* Get the default dataset transfer property list if the user didn't provide
if (H5P DEFAULT == dxpl_id)
dxpl_id = H5P_DATASET XFER DEFAULT;
else
if (TRUE != H5P_isa_class(dxpl_id, H5P_DATASET XFER))

HGOTO_ERROR (H5E_ARGS,

/* Read the data */
if ((ret_value =

HGOTO_ERROR (H5E_DATASET,

done:

}

FUNC_LEAVE_API (ret value)
/* end H5Dread () */

H5VL dataset read(vol obj, mem type id, mem_ space id,
H5E_READERROR,

HS5E_BADTYPE,

FAIL, "not xfer parms")

file_

FAIL, "can't read data")

How to Make H5Dread MT-Safe

e Fundamental Step: Make H5Dread entry-point thread-safe
o Modifications to H5Dread
m Use new global lock-acquisition TRACE macro
m Use new global lock-acquisition ERROR macros
m Use new reader API Lock-acquisition public FUNC_ENTER/LEAVE macros
o For each “side call’: H51 object verify, H5P isa_class
m Use new global lock-acquisition private FUNC_ENTER/LEAVE macro
o For “main call”: H5VL_dataset read
m Leave with non-lock-acquisition private FUNC_ENTER/LEAVE macros
m Use new global lock-acquisition ERROR macros
m Use new global lock-acquisition private FUNC_ENTER/LEAVE macro in each “side call”
m Repeat these “main call” steps as the call chain continues down internal routines, until the
pread() call in the sec2 (POSIX) VFD is reached:
e Hb5VL_dataset read => H5VL native dataset read => H5D _read =>
H5D contig read => H5D _ select read => H5D__ select_io => ... => pread()

How to Make H5Dread MT-Safe

e Advanced Steps: Make a “side call” thread-safe
o [[[Describe how to make H5I object verify thread-safe and concurrent]]]
o [[[ID manager discussed here?]]]

Dataset Memory Object Modifications

e Object acquisition/use as serialization point
o Removes need for long-lived critical sections of code
o Allows management of multiple, conflicting atomic changes to object
o Implement; Add reference count to track liveness
o Implement; Add ISLOCKED flag to manage exclusive use

e Reference() and release(); Atomically {in,de}crease the reference count
o When reference count goes to zero => destroy (AKA “kill”) the record

e Lock() and unlock(); Atomically wait then set and unset the ISLOCKED flag
e Get() and put(); ref + lock and unlock + release
e Modify Lookup(by ID); Create or return object given an ID

o Object is returned referenced and locked
o If caller did not want that, just drop the offending portion with unlock or release
m Or, pass a flag indicating whether caller wants the lock as this would be the usual, but
not normal, case

But the close routine can’t!

e Destruction no longer explicit, must be able to defer it

e Solution; Zombies!
o Implement; Add ISZOMB flag to dataset record/handle
o ID manager must be careful to block attempts by caller to reopen until the associated
record/handle has been killed
e Gone(); Remove/Stall association, then put() + set ISZOMB flag
o Refactor close routine into a call to gone
o Moving the real destruction into a “kill” routine, used by the release routine
e Other threads can continue normally
o Until they drop their last reference, of course
o Though they might need to exercise care when reacquiring locks

